These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26181904)

  • 21. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components.
    Jetter R; Riederer M
    Plant Physiol; 2016 Feb; 170(2):921-34. PubMed ID: 26644508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance.
    Islam MA; Du H; Ning J; Ye H; Xiong L
    Plant Mol Biol; 2009 Jul; 70(4):443-56. PubMed ID: 19322663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?
    Buschhaus C; Jetter R
    J Exp Bot; 2011 Jan; 62(3):841-53. PubMed ID: 21193581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly.
    Koch K; Ensikat HJ
    Micron; 2008 Oct; 39(7):759-72. PubMed ID: 18187332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance.
    Yang Y; Shi J; Chen L; Xiao W; Yu J
    Plant Sci; 2022 Aug; 321():111256. PubMed ID: 35696901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-adhesive effects of plant wax coverage on insect attachment.
    Gorb EV; Gorb SN
    J Exp Bot; 2017 Nov; 68(19):5323-5337. PubMed ID: 28992238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virological Quality of Irrigation Water in Leafy Green Vegetables and Berry Fruits Production Chains.
    Kokkinos P; Kozyra I; Lazic S; Söderberg K; Vasickova P; Bouwknegt M; Rutjes S; Willems K; Moloney R; de Roda Husman AM; Kaupke A; Legaki E; D'Agostino M; Cook N; von Bonsdorff CH; Rzeżutka A; Petrovic T; Maunula L; Pavlik I; Vantarakis A
    Food Environ Virol; 2017 Mar; 9(1):72-78. PubMed ID: 27709435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two sides of a leaf blade: Blumeria graminis needs chemical cues in cuticular waxes of Lolium perenne for germination and differentiation.
    Ringelmann A; Riedel M; Riederer M; Hildebrandt U
    Planta; 2009 Jun; 230(1):95-105. PubMed ID: 19352695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Key characteristics of foods with an elevated risk for viral enteropathogen contamination.
    Yeargin T; Gibson KE
    J Appl Microbiol; 2019 Apr; 126(4):996-1010. PubMed ID: 30244501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wax layers on Cosmos bipinnatus petals contribute unequally to total petal water resistance.
    Buschhaus C; Hager D; Jetter R
    Plant Physiol; 2015 Jan; 167(1):80-8. PubMed ID: 25413359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L.
    Wen M; Buschhaus C; Jetter R
    Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of Vegetable Surface Properties and Sanitizer Type on Annual Disease Burden of Rotavirus Illness by Consumption of Rotavirus-Contaminated Fresh Vegetables: A Quantitative Microbial Risk Assessment.
    Fuzawa M; Smith RL; Ku KM; Shisler JL; Feng H; Juvik JA; Nguyen TH
    Risk Anal; 2020 Apr; 40(4):741-757. PubMed ID: 31742761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trisodium phosphate for foodborne virus reduction on produce.
    Su X; D'Souza DH
    Foodborne Pathog Dis; 2011 Jun; 8(6):713-7. PubMed ID: 21381924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy.
    Kim KW
    Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental Changes in Composition and Morphology of Cuticular Waxes on Leaves and Spikes of Glossy and Glaucous Wheat (Triticum aestivum L.).
    Wang Y; Wang J; Chai G; Li C; Hu Y; Chen X; Wang Z
    PLoS One; 2015; 10(10):e0141239. PubMed ID: 26506246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Major constituents of the foliar epicuticular waxes of species from the Caatinga and Cerrado.
    Oliveira AF; Salatino A
    Z Naturforsch C J Biosci; 2000; 55(9-10):688-92. PubMed ID: 11098816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wax composition and concentration in jujube (Ziziphus jujuba Mill.) cultivars with differential resistance to fruit cracking.
    Li N; Fu L; Song Y; Li J; Xue X; Li S; Li L
    J Plant Physiol; 2020 Dec; 255():153294. PubMed ID: 33070052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variations of membrane fatty acids and epicuticular wax metabolism in response to oleocellosis in lemon fruit.
    Zhou X; Wang Z; Zhu C; Yue J; Yang H; Li J; Gao J; Xu R; Deng X; Cheng Y
    Food Chem; 2021 Feb; 338():127684. PubMed ID: 32916584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporating Phage Therapy into WPI Dip Coatings for Applications on Fresh Whole and Cut Fruit and Vegetable Surfaces.
    Vonasek EL; Choi AH; Sanchez J; Nitin N
    J Food Sci; 2018 Jul; 83(7):1871-1879. PubMed ID: 29905930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polydimethylsiloxane Replicas Efficacy for Simulating Fresh Produce Surfaces and Application in Mechanistic Study of Colloid Retention.
    Sun T; Lazouskaya V; Jin Y
    J Food Sci; 2019 Mar; 84(3):524-531. PubMed ID: 30775789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.