These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 26182105)
1. Electronic Properties of Bilayer Graphene Strongly Coupled to Interlayer Stacking and an External Electric Field. Park C; Ryou J; Hong S; Sumpter BG; Kim G; Yoon M Phys Rev Lett; 2015 Jul; 115(1):015502. PubMed ID: 26182105 [TBL] [Abstract][Full Text] [Related]
2. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure. Phuc HV; Hieu NN; Hoi BD; Nguyen CV Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024 [TBL] [Abstract][Full Text] [Related]
3. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering. Li X; Dai Y; Ma Y; Han S; Huang B Phys Chem Chem Phys; 2014 Mar; 16(9):4230-5. PubMed ID: 24452306 [TBL] [Abstract][Full Text] [Related]
4. Grain size control in the fabrication of large single-crystal bilayer graphene structures. Gan L; Zhang H; Wu R; Zhang Q; Ou X; Ding Y; Sheng P; Luo Z Nanoscale; 2015 Feb; 7(6):2391-9. PubMed ID: 25563192 [TBL] [Abstract][Full Text] [Related]
5. Polycrystallinity and stacking in CVD graphene. Tsen AW; Brown L; Havener RW; Park J Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386 [TBL] [Abstract][Full Text] [Related]
6. Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene. Yu Z; Song A; Sun L; Li Y; Gao L; Peng H; Ma T; Liu Z; Luo J Small; 2020 Apr; 16(15):e1902844. PubMed ID: 31490630 [TBL] [Abstract][Full Text] [Related]
7. A promising way to open an energy gap in bilayer graphene. Hao J; Huang C; Wu H; Qiu Y; Gao Q; Hu Z; Kan E; Zhang L Nanoscale; 2015 Oct; 7(40):17096-101. PubMed ID: 26420470 [TBL] [Abstract][Full Text] [Related]
8. Tunable band gaps in graphene/GaN van der Waals heterostructures. Huang L; Yue Q; Kang J; Li Y; Li J J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081 [TBL] [Abstract][Full Text] [Related]
9. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride. Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975 [TBL] [Abstract][Full Text] [Related]
10. Field modulation in bilayer graphene band structure. Raza H; Kan EC J Phys Condens Matter; 2009 Mar; 21(10):102202. PubMed ID: 21817415 [TBL] [Abstract][Full Text] [Related]
11. Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene. Solís-Fernández P; Terao Y; Kawahara K; Nishiyama W; Uwanno T; Lin YC; Yamamoto K; Nakashima H; Nagashio K; Hibino H; Suenaga K; Ago H ACS Nano; 2020 Jun; 14(6):6834-6844. PubMed ID: 32407070 [TBL] [Abstract][Full Text] [Related]
12. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
13. A first-principles study of the electrically tunable band gap in few-layer penta-graphene. Wang J; Wang Z; Zhang RJ; Zheng YX; Chen LY; Wang SY; Tsoo CC; Huang HJ; Su WS Phys Chem Chem Phys; 2018 Jul; 20(26):18110-18116. PubMed ID: 29938269 [TBL] [Abstract][Full Text] [Related]
14. Interlayer Decoupling in 30° Twisted Bilayer Graphene Quasicrystal. Deng B; Wang B; Li N; Li R; Wang Y; Tang J; Fu Q; Tian Z; Gao P; Xue J; Peng H ACS Nano; 2020 Feb; 14(2):1656-1664. PubMed ID: 31961130 [TBL] [Abstract][Full Text] [Related]
15. Stacking-dependent optical conductivity of bilayer graphene. Wang Y; Ni Z; Liu L; Liu Y; Cong C; Yu T; Wang X; Shen D; Shen Z ACS Nano; 2010 Jul; 4(7):4074-80. PubMed ID: 20518519 [TBL] [Abstract][Full Text] [Related]
16. Mapping of Bernal and non-Bernal stacking domains in bilayer graphene using infrared nanoscopy. Jeong G; Choi B; Kim DS; Ahn S; Park B; Kang JH; Min H; Hong BH; Kim ZH Nanoscale; 2017 Mar; 9(12):4191-4195. PubMed ID: 28287222 [TBL] [Abstract][Full Text] [Related]
17. Difference in gating and doping effects on the band gap in bilayer graphene. Uchiyama T; Goto H; Akiyoshi H; Eguchi R; Nishikawa T; Osada H; Kubozono Y Sci Rep; 2017 Sep; 7(1):11322. PubMed ID: 28900237 [TBL] [Abstract][Full Text] [Related]
18. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics. Woo J; Yun KH; Chung YC ACS Appl Mater Interfaces; 2016 Apr; 8(16):10477-82. PubMed ID: 27046262 [TBL] [Abstract][Full Text] [Related]
19. Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2. Xiao J; Long M; Li X; Zhang Q; Xu H; Chan KS J Phys Condens Matter; 2014 Oct; 26(40):405302. PubMed ID: 25224268 [TBL] [Abstract][Full Text] [Related]
20. Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Menezes MG; Capaz RB J Phys Condens Matter; 2015 Aug; 27(33):335302. PubMed ID: 26241104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]