BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26182346)

  • 1. Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction.
    Patel RR; Barbosa C; Xiao Y; Cummins TR
    PLoS One; 2015; 10(7):e0133485. PubMed ID: 26182346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical mechanisms underlying tefluthrin-induced modulation of gating changes and resurgent current generation in the human Na
    Lai HJ; Lee MJ; Yu HW; Chen KW; Tsai KL; Lin PC; Huang CW
    Pestic Biochem Physiol; 2024 Mar; 200():105833. PubMed ID: 38582596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea-anemone toxin ATX-II elicits A-fiber-dependent pain and enhances resurgent and persistent sodium currents in large sensory neurons.
    Klinger AB; Eberhardt M; Link AS; Namer B; Kutsche LK; Schuy ET; Sittl R; Hoffmann T; Alzheimer C; Huth T; Carr RW; Lampert A
    Mol Pain; 2012 Sep; 8():69. PubMed ID: 22978421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of the FGF14:Nav1.6 complex interface reveals FLPK as a functionally active peptide modulating excitability.
    Singh AK; Wadsworth PA; Tapia CM; Aceto G; Ali SR; Chen H; D'Ascenzo M; Zhou J; Laezza F
    Physiol Rep; 2020 Jul; 8(14):e14505. PubMed ID: 32671946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resurgent and Gating Pore Currents Induced by
    Mason ER; Wu F; Patel RR; Xiao Y; Cannon SC; Cummins TR
    eNeuro; 2019; 6(5):. PubMed ID: 31558572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation.
    Eberhardt M; Nakajima J; Klinger AB; Neacsu C; Hühne K; O'Reilly AO; Kist AM; Lampe AK; Fischer K; Gibson J; Nau C; Winterpacht A; Lampert A
    J Biol Chem; 2014 Jan; 289(4):1971-80. PubMed ID: 24311784
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Ravenscroft TA; Janssens J; Lee PT; Tepe B; Marcogliese PC; Makhzami S; Holmes TC; Aerts S; Bellen HJ
    J Neurosci; 2020 Oct; 40(42):7999-8024. PubMed ID: 32928889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary mechanisms of calmodulin regulation of Na
    Kang PW; Chakouri N; Diaz J; Tomaselli GF; Yue DT; Ben-Johny M
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34021086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-gated sodium channel-associated proteins and alternative mechanisms of inactivation and block.
    Goldfarb M
    Cell Mol Life Sci; 2012 Apr; 69(7):1067-76. PubMed ID: 21947499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex biophysical changes and reduced neuronal firing in an SCN8A variant associated with developmental delay and epilepsy.
    Quinn S; Zhang N; Fenton TA; Brusel M; Muruganandam P; Peleg Y; Giladi M; Haitin Y; Lerche H; Bassan H; Liu Y; Ben-Shalom R; Rubinstein M
    Biochim Biophys Acta Mol Basis Dis; 2024 Jun; 1870(5):167127. PubMed ID: 38519006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acidosis on neuronal voltage-gated sodium channels: Nav1.1 and Nav1.3.
    Ghovanloo MR; Peters CH; Ruben PC
    Channels (Austin); 2018; 12(1):367-377. PubMed ID: 30362397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of a chronic pain mutation in the voltage-gated sodium channel Nav1.7 increases voltage sensitivity.
    Kerth CM; Hautvast P; Körner J; Lampert A; Meents JE
    J Biol Chem; 2021; 296():100227. PubMed ID: 33361158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Observation of Compartment-Specific Localization and Dynamics of Voltage-Gated Sodium Channels.
    Liu H; Wang HG; Pitt G; Liu Z
    J Neurosci; 2022 Jul; 42(28):5482-5498. PubMed ID: 35672149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of acute Na
    James TF; Nenov MN; Tapia CM; Lecchi M; Koshy S; Green TA; Laezza F
    Neurotoxicology; 2017 May; 60():150-160. PubMed ID: 28007400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Pharmacology of Selective Na
    Goodchild SJ; Shuart NG; Williams AD; Ye W; Parrish RR; Soriano M; Thouta S; Mezeyova J; Waldbrook M; Dean R; Focken T; Ghovanloo MR; Ruben PC; Scott F; Cohen CJ; Empfield J; Johnson JP
    ACS Chem Neurosci; 2024 Mar; 15(6):1169-1184. PubMed ID: 38359277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term inactivation particle for voltage-gated sodium channels.
    Dover K; Solinas S; D'Angelo E; Goldfarb M
    J Physiol; 2010 Oct; 588(Pt 19):3695-711. PubMed ID: 20679355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact on backpropagation of the spatial heterogeneity of sodium channel kinetics in the axon initial segment.
    Barlow BSM; Longtin A; Joós B
    PLoS Comput Biol; 2024 Mar; 20(3):e1011846. PubMed ID: 38489374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct functional alterations in SCN8A epilepsy mutant channels.
    Pan Y; Cummins TR
    J Physiol; 2020 Jan; 598(2):381-401. PubMed ID: 31715021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium channels and mammalian sensory mechanotransduction.
    Raouf R; Rugiero F; Kiesewetter H; Hatch R; Hummler E; Nassar MA; Wang F; Wood JN
    Mol Pain; 2012 Mar; 8():21. PubMed ID: 22449024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics.
    Poulin H; Bruhova I; Timour Q; Theriault O; Beaulieu JM; Frassati D; Chahine M
    Mol Pharmacol; 2014 Oct; 86(4):378-89. PubMed ID: 25028482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.