BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 26182346)

  • 21. Use-dependent potentiation of the Nav1.6 sodium channel.
    Zhou W; Goldin AL
    Biophys J; 2004 Dec; 87(6):3862-72. PubMed ID: 15465873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative proteomics reveals protein-protein interactions with fibroblast growth factor 12 as a component of the voltage-gated sodium channel 1.2 (nav1.2) macromolecular complex in Mammalian brain.
    Wildburger NC; Ali SR; Hsu WC; Shavkunov AS; Nenov MN; Lichti CF; LeDuc RD; Mostovenko E; Panova-Elektronova NI; Emmett MR; Nilsson CL; Laezza F
    Mol Cell Proteomics; 2015 May; 14(5):1288-300. PubMed ID: 25724910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navbeta4 peptide-mediated resurgent sodium currents.
    Theile JW; Jarecki BW; Piekarz AD; Cummins TR
    J Physiol; 2011 Feb; 589(Pt 3):597-608. PubMed ID: 21115638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.
    Ali SR; Singh AK; Laezza F
    J Biol Chem; 2016 May; 291(21):11268-84. PubMed ID: 26994141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional expression of Rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit.
    He B; Soderlund DM
    PLoS One; 2014; 9(1):e85188. PubMed ID: 24404202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.
    Li T; Lu G; Chiang EY; Chernov-Rogan T; Grogan JL; Chen J
    PLoS One; 2017; 12(7):e0180154. PubMed ID: 28683073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory effects of cannabidiol on voltage-dependent sodium currents.
    Ghovanloo MR; Shuart NG; Mezeyova J; Dean RA; Ruben PC; Goodchild SJ
    J Biol Chem; 2018 Oct; 293(43):16546-16558. PubMed ID: 30219789
    [No Abstract]   [Full Text] [Related]  

  • 28. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents.
    Jarecki BW; Piekarz AD; Jackson JO; Cummins TR
    J Clin Invest; 2010 Jan; 120(1):369-78. PubMed ID: 20038812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.
    Wang GK; Calderon J; Wang SY
    Mol Pharmacol; 2008 Mar; 73(3):940-8. PubMed ID: 18079277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of Navβ4-Mediated Regulation of Sodium Currents in Adult Purkinje Neurons Disrupts Firing and Impairs Motor Coordination and Balance.
    Ransdell JL; Dranoff E; Lau B; Lo WL; Donermeyer DL; Allen PM; Nerbonne JM
    Cell Rep; 2017 Apr; 19(3):532-544. PubMed ID: 28423317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of human Nav1.7 channel gating by synthetic α-scorpion toxin OD1 and its analogs.
    Motin L; Durek T; Adams DJ
    Channels (Austin); 2016; 10(2):139-47. PubMed ID: 26646206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of resurgent current in NaV1.6-null Purkinje neurons by slowing sodium channel inactivation with beta-pompilidotoxin.
    Grieco TM; Raman IM
    J Neurosci; 2004 Jan; 24(1):35-42. PubMed ID: 14715935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity.
    Fruscione F; Valente P; Sterlini B; Romei A; Baldassari S; Fadda M; Prestigio C; Giansante G; Sartorelli J; Rossi P; Rubio A; Gambardella A; Nieus T; Broccoli V; Fassio A; Baldelli P; Corradi A; Zara F; Benfenati F
    Brain; 2018 Apr; 141(4):1000-1016. PubMed ID: 29554219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of voltage-gated Na⁺ channels by the synthetic cannabinoid ajulemic acid.
    Foadi N; Berger C; Pilawski I; Stoetzer C; Karst M; Haeseler G; Wegner F; Leffler A; Ahrens J
    Anesth Analg; 2014 Jun; 118(6):1238-45. PubMed ID: 24755846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.
    He B; Soderlund DM
    Toxicol Appl Pharmacol; 2016 Jan; 291():58-69. PubMed ID: 26708501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preferential targeting of Nav1.6 voltage-gated Na+ Channels to the axon initial segment during development.
    Akin EJ; Solé L; Dib-Hajj SD; Waxman SG; Tamkun MM
    PLoS One; 2015; 10(4):e0124397. PubMed ID: 25874799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impaired firing and cell-specific compensation in neurons lacking nav1.6 sodium channels.
    Van Wart A; Matthews G
    J Neurosci; 2006 Jul; 26(27):7172-80. PubMed ID: 16822974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Risperidone inhibits voltage-gated sodium channels.
    Brauner JM; Hessler S; Groemer TW; Alzheimer C; Huth T
    Eur J Pharmacol; 2014 Apr; 728():100-6. PubMed ID: 24508524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FGF14 localization and organization of the axon initial segment.
    Xiao M; Bosch MK; Nerbonne JM; Ornitz DM
    Mol Cell Neurosci; 2013 Sep; 56():393-403. PubMed ID: 23891806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.