BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26182355)

  • 21. The structural basis of the TIM10 chaperone assembly.
    Lu H; Golovanov AP; Alcock F; Grossmann JG; Allen S; Lian LY; Tokatlidis K
    J Biol Chem; 2004 Apr; 279(18):18959-66. PubMed ID: 14973126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The essential function of the small Tim proteins in the TIM22 import pathway does not depend on formation of the soluble 70-kilodalton complex.
    Murphy MP; Leuenberger D; Curran SP; Oppliger W; Koehler CM
    Mol Cell Biol; 2001 Sep; 21(18):6132-8. PubMed ID: 11509656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria.
    Terziyska N; Grumbt B; Kozany C; Hell K
    J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria.
    Milenkovic D; Ramming T; Müller JM; Wenz LS; Gebert N; Schulze-Specking A; Stojanovski D; Rospert S; Chacinska A
    Mol Biol Cell; 2009 May; 20(10):2530-9. PubMed ID: 19297525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space.
    Gentle IE; Perry AJ; Alcock FH; Likić VA; Dolezal P; Ng ET; Purcell AW; McConnville M; Naderer T; Chanez AL; Charrière F; Aschinger C; Schneider A; Tokatlidis K; Lithgow T
    Mol Biol Evol; 2007 May; 24(5):1149-60. PubMed ID: 17329230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space.
    Sideris DP; Tokatlidis K
    Mol Microbiol; 2007 Sep; 65(5):1360-73. PubMed ID: 17680986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain.
    Lionaki E; de Marcos Lousa C; Baud C; Vougioukalaki M; Panayotou G; Tokatlidis K
    J Biol Chem; 2008 Jun; 283(23):15747-53. PubMed ID: 18387953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding and biogenesis of mitochondrial small Tim proteins.
    Ceh-Pavia E; Spiller MP; Lu H
    Int J Mol Sci; 2013 Aug; 14(8):16685-705. PubMed ID: 23945562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments.
    Rampelt H; Sucec I; Bersch B; Horten P; Perschil I; Martinou JC; van der Laan M; Wiedemann N; Schanda P; Pfanner N
    BMC Biol; 2020 Jan; 18(1):2. PubMed ID: 31907035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial inner-membrane protease Yme1 degrades outer-membrane proteins Tom22 and Om45.
    Wu X; Li L; Jiang H
    J Cell Biol; 2018 Jan; 217(1):139-149. PubMed ID: 29138251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional crosstalk between the TIM22 complex and YME1 machinery maintains mitochondrial proteostasis and integrity.
    Kumar A; Waingankar TP; D'Silva P
    J Cell Sci; 2023 Jan; 136(2):. PubMed ID: 36601773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins.
    Morgan B; Ang SK; Yan G; Lu H
    J Biol Chem; 2009 Mar; 284(11):6818-25. PubMed ID: 19117943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allosteric and electrostatic protein-protein interactions regulate the assembly of the heterohexameric Tim9-Tim10 complex.
    Ivanova E; Lu H
    J Mol Biol; 2008 Jun; 379(3):609-16. PubMed ID: 18462749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of Tim9p in the assembly of the TIM22 import complexes.
    Leuenberger D; Curran SP; Wong D; Koehler CM
    Traffic; 2003 Mar; 4(3):144-52. PubMed ID: 12656987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translocation and assembly of mitochondrially coded Saccharomyces cerevisiae cytochrome c oxidase subunit Cox2 by Oxa1 and Yme1 in the absence of Cox18.
    Fiumera HL; Dunham MJ; Saracco SA; Butler CA; Kelly JA; Fox TD
    Genetics; 2009 Jun; 182(2):519-28. PubMed ID: 19307606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of the TIM10 homologue from the yeast Pichia sorbitophila: a putative component of the mitochondrial protein import system.
    Kayingo G; Potier S; Hohmann S; Prior BA
    Yeast; 2000 May; 16(7):589-96. PubMed ID: 10806421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription of TIM9, a new factor required for the petite-positive phenotype of Saccharomyces cerevisiae, is defective in spt7 mutants.
    Senapin S; Chen XJ; Clark-Walker GD
    Curr Genet; 2003 Dec; 44(4):202-10. PubMed ID: 12923659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria.
    Wrobel L; Trojanowska A; Sztolsztener ME; Chacinska A
    Mol Biol Cell; 2013 Mar; 24(5):543-54. PubMed ID: 23283984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional TIM10 chaperone assembly is redox-regulated in vivo.
    Lu H; Allen S; Wardleworth L; Savory P; Tokatlidis K
    J Biol Chem; 2004 Apr; 279(18):18952-8. PubMed ID: 14973127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system.
    Gross DP; Burgard CA; Reddehase S; Leitch JM; Culotta VC; Hell K
    Mol Biol Cell; 2011 Oct; 22(20):3758-67. PubMed ID: 21865601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.