These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26182988)

  • 1. Viral delivery of shRNA to amygdala neurons leads to neurotoxicity and deficits in Pavlovian fear conditioning.
    de Solis CA; Holehonnur R; Banerjee A; Luong JA; Lella SK; Ho A; Pahlavan B; Ploski JE
    Neurobiol Learn Mem; 2015 Oct; 124():34-47. PubMed ID: 26182988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment.
    Banerjee A; Luong JA; Ho A; Saib AO; Ploski JE
    Mol Autism; 2016; 7():16. PubMed ID: 26929812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.
    Chau LS; Prakapenka A; Fleming SA; Davis AS; Galvez R
    Neurobiol Learn Mem; 2013 Nov; 106():127-33. PubMed ID: 23891993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PACAP increases Arc/Arg 3.1 expression within the extended amygdala after fear conditioning in rats.
    Meloni EG; Kaye KT; Venkataraman A; Carlezon WA
    Neurobiol Learn Mem; 2019 Jan; 157():24-34. PubMed ID: 30458282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala.
    Ploski JE; Pierre VJ; Smucny J; Park K; Monsey MS; Overeem KA; Schafe GE
    J Neurosci; 2008 Nov; 28(47):12383-95. PubMed ID: 19020031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adeno-associated viral serotypes produce differing titers and differentially transduce neurons within the rat basal and lateral amygdala.
    Holehonnur R; Luong JA; Chaturvedi D; Ho A; Lella SK; Hosek MP; Ploski JE
    BMC Neurosci; 2014 Feb; 15():28. PubMed ID: 24533621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for reconsolidation of a Pavlovian fear memory.
    Maddox SA; Schafe GE
    J Neurosci; 2011 May; 31(19):7073-82. PubMed ID: 21562269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of Pavlovian fear conditioning in the amygdala.
    Bergstrom HC; McDonald CG; Dey S; Tang H; Selwyn RG; Johnson LR
    Brain Struct Funct; 2013 Nov; 218(6):1569-89. PubMed ID: 23179863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system.
    Ehlert EM; Eggers R; Niclou SP; Verhaagen J
    BMC Neurosci; 2010 Feb; 11():20. PubMed ID: 20167052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limbic system development underlies the emergence of classical fear conditioning during the third and fourth weeks of life in the rat.
    Deal AL; Erickson KJ; Shiers SI; Burman MA
    Behav Neurosci; 2016 Apr; 130(2):212-30. PubMed ID: 26820587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An organization of visual and auditory fear conditioning in the lateral amygdala.
    Bergstrom HC; Johnson LR
    Neurobiol Learn Mem; 2014 Dec; 116():1-13. PubMed ID: 25076183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear.
    Dalton GL; Wu DC; Wang YT; Floresco SB; Phillips AG
    Neuropharmacology; 2012 Feb; 62(2):797-806. PubMed ID: 21925518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.
    Gruene T; Flick K; Rendall S; Cho JH; Gray J; Shansky R
    Neuroscience; 2016 Jul; 328():157-64. PubMed ID: 27155146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys.
    Mockenhaupt S; Grosse S; Rupp D; Bartenschlager R; Grimm D
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4007-16. PubMed ID: 26170322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning.
    Nader K; Majidishad P; Amorapanth P; LeDoux JE
    Learn Mem; 2001; 8(3):156-63. PubMed ID: 11390635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal Arc protein expression and conditioned fear.
    Hudgins C; Otto T
    Neurobiol Learn Mem; 2019 May; 161():175-191. PubMed ID: 30991091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala.
    Sevelinges Y; Gervais R; Messaoudi B; Granjon L; Mouly AM
    Learn Mem; 2004; 11(6):761-9. PubMed ID: 15537739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adeno-associated viral serotypes differentially transduce inhibitory neurons within the rat amygdala.
    de Solis CA; Hosek MP; Holehonnur R; Ho A; Banerjee A; Luong JA; Jones LE; Chaturvedi D; Ploski JE
    Brain Res; 2017 Oct; 1672():148-162. PubMed ID: 28764932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific induction of early growth response gene 1 in the lateral nucleus of the amygdala following contextual fear conditioning in rats.
    Malkani S; Rosen JB
    Neuroscience; 2000; 97(4):693-702. PubMed ID: 10842014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chronic corticosterone and glucocorticoid receptor antagonism in the amygdala on fear conditioning.
    Conrad CD; MacMillan DD; Tsekhanov S; Wright RL; Baran SE; Fuchs RA
    Neurobiol Learn Mem; 2004 May; 81(3):185-99. PubMed ID: 15082020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.