BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 26183475)

  • 1. Adaptation of iron requirement to hypoxic conditions at high altitude.
    Gassmann M; Muckenthaler MU
    J Appl Physiol (1985); 2015 Dec; 119(12):1432-40. PubMed ID: 26183475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers.
    Goetze O; Schmitt J; Spliethoff K; Theurl I; Weiss G; Swinkels DW; Tjalsma H; Maggiorini M; Krayenbühl P; Rau M; Fruehauf H; Wojtal KA; Müllhaupt B; Fried M; Gassmann M; Lutz T; Geier A
    Hepatology; 2013 Dec; 58(6):2153-62. PubMed ID: 23787477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased hepcidin levels in high-altitude pulmonary edema.
    Altamura S; Bärtsch P; Dehnert C; Maggiorini M; Weiss G; Theurl I; Muckenthaler MU; Mairbäurl H
    J Appl Physiol (1985); 2015 Feb; 118(3):292-8. PubMed ID: 25525212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Altitude Acclimatization Suppresses Hepcidin Expression During Severe Energy Deficit.
    Hennigar SR; Berryman CE; Kelley AM; Anderson BJ; Young AJ; McClung JP; Pasiakos SM
    High Alt Med Biol; 2020 Sep; 21(3):232-236. PubMed ID: 32316799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine tuning the HIF-1 'global' O2 sensor for hypobaric hypoxia in Andean high-altitude natives.
    Hochachka PW; Rupert JL
    Bioessays; 2003 May; 25(5):515-9. PubMed ID: 12717822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle.
    Robach P; Cairo G; Gelfi C; Bernuzzi F; Pilegaard H; Viganò A; Santambrogio P; Cerretelli P; Calbet JA; Moutereau S; Lundby C
    Blood; 2007 Jun; 109(11):4724-31. PubMed ID: 17311997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
    Stockmann C; Fandrey J
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):968-79. PubMed ID: 17002676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of erythropoiesis by hypoxia-inducible factors.
    Haase VH
    Blood Rev; 2013 Jan; 27(1):41-53. PubMed ID: 23291219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-altitude training. Aspects of haematological adaptation.
    Berglund B
    Sports Med; 1992 Nov; 14(5):289-303. PubMed ID: 1439397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man.
    Heinicke K; Prommer N; Cajigal J; Viola T; Behn C; Schmidt W
    Eur J Appl Physiol; 2003 Feb; 88(6):535-43. PubMed ID: 12560952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis.
    Duarte TL; Talbot NP; Drakesmith H
    Antioxid Redox Signal; 2021 Aug; 35(6):433-452. PubMed ID: 32791852
    [No Abstract]   [Full Text] [Related]  

  • 12. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans.
    Wojtal KA; Cee A; Lang S; Götze O; Frühauf H; Geier A; Pastor-Anglada M; Torres-Torronteras J; Martí R; Fried M; Lutz TA; Maggiorini M; Gassmann M; Rogler G; Vavricka SR
    Am J Physiol Gastrointest Liver Physiol; 2014 Oct; 307(7):G673-88. PubMed ID: 24970780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of erythropoiesis after high altitude acclimatization.
    Savourey G; Launay JC; Besnard Y; Guinet A; Bourrilhon C; Cabane D; Martin S; Caravel JP; Péquignot JM; Cottet-Emard JM
    Eur J Appl Physiol; 2004 Oct; 93(1-2):47-56. PubMed ID: 15248067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of iron supplementation on the expression of hypoxia-inducible factor and antioxidant status in rats exposed to high-altitude hypoxia environment.
    Xu C; Dong C; Xu C; Han T; Bao S; Gao X
    Biol Trace Elem Res; 2014 Dec; 162(1-3):142-52. PubMed ID: 25380676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological focus on the erythropoietin-hepcidin-ferroportin axis.
    D'Anna MC; Roque ME
    Can J Physiol Pharmacol; 2013 May; 91(5):338-45. PubMed ID: 23656253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity.
    Schmidt W
    High Alt Med Biol; 2002; 3(2):167-76. PubMed ID: 12162861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis.
    Li P; Huang J; Tian HJ; Huang QY; Jiang CH; Gao YQ
    Exp Hematol; 2011 Jan; 39(1):37-46. PubMed ID: 20977927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual Cross Talk Between Iron Homeostasis and Erythropoiesis.
    Rybinska I; Cairo G
    Vitam Horm; 2017; 105():143-160. PubMed ID: 28629515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of high-altitude hypoxia-induced cell stress in murine model.
    Juan H; Qijun W; Yuanheng H; Yangfang L
    Cell Biochem Biophys; 2012 Nov; 64(2):85-8. PubMed ID: 22717868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron, oxygen, and the pulmonary circulation.
    Frise MC; Robbins PA
    J Appl Physiol (1985); 2015 Dec; 119(12):1421-31. PubMed ID: 26066825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.