BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26183476)

  • 1. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.
    Smirl JD; Tzeng YC; Monteleone BJ; Ainslie PN
    J Appl Physiol (1985); 2014 Jun; 116(12):1614-22. PubMed ID: 24744385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between cerebral blood flow and blood pressure in long-term heart transplant recipients.
    Smirl JD; Haykowsky MJ; Nelson MD; Tzeng YC; Marsden KR; Jones H; Ainslie PN
    Hypertension; 2014 Dec; 64(6):1314-20. PubMed ID: 25287403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Systolic and Diastolic Regulation of the Cerebral Pressure-Flow Relationship During Squat-Stand Manoeuvres.
    Smirl JD; Wright AD; Ainslie PN; Tzeng YC; van Donkelaar P
    Acta Neurochir Suppl; 2018; 126():263-268. PubMed ID: 29492572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of cerebral autoregulation: the quandary of quantification.
    Tzeng YC; Ainslie PN; Cooke WH; Peebles KC; Willie CK; MacRae BA; Smirl JD; Horsman HM; Rickards CA
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(6):H658-71. PubMed ID: 22821992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver.
    van Beek AH; Olde Rikkert MG; Pasman JW; Hopman MT; Claassen JA
    Ultrasound Med Biol; 2010 Feb; 36(2):192-201. PubMed ID: 20045593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow breathing as a means to improve orthostatic tolerance: a randomized sham-controlled trial.
    Lucas SJ; Lewis NC; Sikken EL; Thomas KN; Ainslie PN
    J Appl Physiol (1985); 2013 Jul; 115(2):202-11. PubMed ID: 23681913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure.
    Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG
    J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic cerebral autoregulation during repeated squat-stand maneuvers.
    Claassen JA; Levine BD; Zhang R
    J Appl Physiol (1985); 2009 Jan; 106(1):153-60. PubMed ID: 18974368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systolic and Diastolic Regulation of the Cerebral Pressure-Flow Relationship Differentially Affected by Acute Sport-Related Concussion.
    Wright AD; Smirl JD; Bryk K; van Donkelaar P
    Acta Neurochir Suppl; 2018; 126():303-308. PubMed ID: 29492579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans.
    Anderson GK; Sprick JD; Park FS; Rosenberg AJ; Rickards CA
    Exp Physiol; 2019 Aug; 104(8):1190-1201. PubMed ID: 31090115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular and cerebrovascular responses to lower body negative pressure in type 2 diabetic patients.
    Marthol H; Zikeli U; Brown CM; Tutaj M; Hilz MJ
    J Neurol Sci; 2007 Jan; 252(2):99-105. PubMed ID: 17173934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental relationships between blood pressure and cerebral blood flow in humans.
    Tzeng YC; MacRae BA; Ainslie PN; Chan GS
    J Appl Physiol (1985); 2014 Nov; 117(9):1037-48. PubMed ID: 25170067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.
    Hamner JW; Cohen MA; Mukai S; Lipsitz LA; Taylor JA
    J Physiol; 2004 Sep; 559(Pt 3):965-73. PubMed ID: 15254153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in cerebral autoregulation are unaffected by menstrual cycle phase in young, healthy women.
    Favre ME; Serrador JM
    Am J Physiol Heart Circ Physiol; 2019 Apr; 316(4):H920-H933. PubMed ID: 30707610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does oscillation size matter? Impact of added resistance on the cerebral pressure-flow Relationship in females and males.
    Newel KT; Burma JS; Carere J; Kennedy CM; Smirl JD
    Physiol Rep; 2022 May; 10(10):e15278. PubMed ID: 35581899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.