BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 26183880)

  • 61. African swine fever virus.
    Tulman ER; Delhon GA; Ku BK; Rock DL
    Curr Top Microbiol Immunol; 2009; 328():43-87. PubMed ID: 19216435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Infection, modulation and responses of antigen-presenting cells to African swine fever viruses.
    Franzoni G; Dei Giudici S; Oggiano A
    Virus Res; 2018 Oct; 258():73-80. PubMed ID: 30316802
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolomic analysis of pig spleen reveals African swine fever virus infection increased acylcarnitine levels to facilitate viral replication.
    Yang X; Bie X; Liu H; Shi X; Zhang D; Zhao D; Hao Y; Yang J; Yan W; Chen G; Chen L; Zhu Z; Yang F; Ma X; Liu X; Zheng H; Zhang K
    J Virol; 2023 Aug; 97(8):e0058623. PubMed ID: 37582206
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Protein cell receptors mediate the saturable interaction of African swine fever virus attachment protein p12 with the surface of permissive cells.
    Galindo I; Viñuela E; Carrascosa AL
    Virus Res; 1997 Jun; 49(2):193-204. PubMed ID: 9213394
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cellular processes essential for African swine fever virus to infect and replicate in primary macrophages.
    Basta S; Gerber H; Schaub A; Summerfield A; McCullough KC
    Vet Microbiol; 2010 Jan; 140(1-2):9-17. PubMed ID: 19632793
    [TBL] [Abstract][Full Text] [Related]  

  • 66. African Swine Fever Virus: A Review.
    Galindo I; Alonso C
    Viruses; 2017 May; 9(5):. PubMed ID: 28489063
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Antiviral activity of brequinar against African swine fever virus infection in vitro.
    Grigoryan R; Arabyan E; Izmailyan R; Karalyan Z; Jordão N; Ferreira F; Zakaryan H
    Virus Res; 2022 Aug; 317():198826. PubMed ID: 35618075
    [TBL] [Abstract][Full Text] [Related]  

  • 68. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis.
    Vallée I; Tait SW; Powell PP
    J Virol; 2001 Nov; 75(21):10372-82. PubMed ID: 11581405
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity.
    Sirakanyan S; Arabyan E; Hakobyan A; Hakobyan T; Chilingaryan G; Sahakyan H; Sargsyan A; Arakelov G; Nazaryan K; Izmailyan R; Abroyan L; Karalyan Z; Arakelova E; Hakobyan E; Hovakimyan A; Serobian A; Neves M; Ferreira J; Ferreira F; Zakaryan H
    Emerg Microbes Infect; 2021 Dec; 10(1):783-796. PubMed ID: 33706677
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of a large double-stranded DNA virus by MxA protein.
    Netherton CL; Simpson J; Haller O; Wileman TE; Takamatsu HH; Monaghan P; Taylor G
    J Virol; 2009 Mar; 83(5):2310-20. PubMed ID: 19109387
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assembly of African Swine fever virus: quantitative ultrastructural analysis in vitro and in vivo.
    Brookes SM; Dixon LK; Parkhouse RM
    Virology; 1996 Oct; 224(1):84-92. PubMed ID: 8862402
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The trans Golgi network is lost from cells infected with African swine fever virus.
    McCrossan M; Windsor M; Ponnambalam S; Armstrong J; Wileman T
    J Virol; 2001 Dec; 75(23):11755-65. PubMed ID: 11689656
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intracellular virus DNA distribution and the acquisition of the nucleoprotein core during African swine fever virus particle assembly: ultrastructural in situ hybridisation and DNase-gold labelling.
    Brookes SM; Hyatt AD; Wise T; Parkhouse RM
    Virology; 1998 Sep; 249(1):175-88. PubMed ID: 9740789
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Analysis of HDAC6 and BAG3-aggresome pathways in African swine fever viral factory formation.
    Muñoz-Moreno R; Barrado-Gil L; Galindo I; Alonso C
    Viruses; 2015 Apr; 7(4):1823-31. PubMed ID: 25856634
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inhibition of African swine fever virus in cultured swine monocytes by phosphonoacetic acid (PAA) and by phosphonoformic acid (PFA).
    Villinger F; Genovesi EV; Gerstner DJ; Whyard TC; Knudsen RC
    Arch Virol; 1990; 115(3-4):163-84. PubMed ID: 2148081
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection.
    Galindo I; Hernáez B; Muñoz-Moreno R; Cuesta-Geijo MA; Dalmau-Mena I; Alonso C
    Cell Death Dis; 2012 Jul; 3(7):e341. PubMed ID: 22764100
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A conserved African swine fever virus IkappaB homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine.
    Neilan JG; Lu Z; Kutish GF; Zsak L; Lewis TL; Rock DL
    Virology; 1997 Sep; 235(2):377-85. PubMed ID: 9281518
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection.
    Ramiro-Ibáñez F; Ortega A; Brun A; Escribano JM; Alonso C
    J Gen Virol; 1996 Sep; 77 ( Pt 9)():2209-19. PubMed ID: 8811021
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.
    Hakobyan A; Galindo I; Nañez A; Arabyan E; Karalyan Z; Chistov AA; Streshnev PP; Korshun VA; Alonso C; Zakaryan H
    J Gen Virol; 2018 Jan; 99(1):148-156. PubMed ID: 29235978
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit African Swine Fever Virus Replication.
    Cai S; Zheng Z; Cheng J; Zhong L; Shao R; Zheng F; Lai Z; Ou J; Xu L; Zhou P; Lu G; Zhang G
    Front Immunol; 2022; 13():827709. PubMed ID: 35401540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.