These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 26183952)
1. ASR5 is involved in the regulation of miRNA expression in rice. Neto LB; Arenhart RA; de Oliveira LF; de Lima JC; Bodanese-Zanettini MH; Margis R; Margis-Pinheiro M Plant Cell Rep; 2015 Nov; 34(11):1899-907. PubMed ID: 26183952 [TBL] [Abstract][Full Text] [Related]
2. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes. Arenhart RA; Schunemann M; Bucker Neto L; Margis R; Wang ZY; Margis-Pinheiro M Plant Cell Environ; 2016 Mar; 39(3):645-51. PubMed ID: 26476017 [TBL] [Abstract][Full Text] [Related]
3. Deep Sequencing Discovery and Profiling of Known and Novel miRNAs Produced in Response to DNA Damage in Rice. Zhang J; Xu C; Liu K; Li Y; Wang M; Tao L; Yu H; Zhang C Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576121 [TBL] [Abstract][Full Text] [Related]
4. New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Arenhart RA; Bai Y; de Oliveira LF; Neto LB; Schunemann M; Maraschin Fdos S; Mariath J; Silverio A; Sachetto-Martins G; Margis R; Wang ZY; Margis-Pinheiro M Mol Plant; 2014 Apr; 7(4):709-21. PubMed ID: 24253199 [TBL] [Abstract][Full Text] [Related]
5. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Shen J; Xie K; Xiong L Mol Genet Genomics; 2010 Dec; 284(6):477-88. PubMed ID: 20941508 [TBL] [Abstract][Full Text] [Related]
6. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. Campo S; Peris-Peris C; Siré C; Moreno AB; Donaire L; Zytnicki M; Notredame C; Llave C; San Segundo B New Phytol; 2013 Jul; 199(1):212-227. PubMed ID: 23627500 [TBL] [Abstract][Full Text] [Related]
7. Identification and Characterization of ABA-Responsive MicroRNAs in Rice. Tian C; Zuo Z; Qiu JL J Genet Genomics; 2015 Jul; 42(7):393-402. PubMed ID: 26233894 [TBL] [Abstract][Full Text] [Related]
8. Novel miRNAs in the control of arsenite levels in rice. Liu Q Funct Integr Genomics; 2012 Nov; 12(4):649-58. PubMed ID: 22585409 [TBL] [Abstract][Full Text] [Related]
9. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. Baldrich P; Campo S; Wu MT; Liu TT; Hsing YI; San Segundo B RNA Biol; 2015; 12(8):847-63. PubMed ID: 26083154 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. Xu X; Bai H; Liu C; Chen E; Chen Q; Zhuang J; Shen B PLoS One; 2014; 9(12):e114313. PubMed ID: 25479006 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide discovery of OsHOX24-binding sites and regulation of desiccation stress response in rice. Bhattacharjee A; Srivastava PL; Nath O; Jain M Plant Mol Biol; 2021 Jan; 105(1-2):205-214. PubMed ID: 33025523 [TBL] [Abstract][Full Text] [Related]
12. Involvement of ASR genes in aluminium tolerance mechanisms in rice. Arenhart RA; Lima JC; Pedron M; Carvalho FE; Silveira JA; Rosa SB; Caverzan A; Andrade CM; Schünemann M; Margis R; Margis-Pinheiro M Plant Cell Environ; 2013 Jan; 36(1):52-67. PubMed ID: 22676236 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress. Ding Y; Wang Y; Jiang Z; Wang F; Jiang Q; Sun J; Chen Z; Zhu C J Agric Food Chem; 2017 Jul; 65(29):5860-5867. PubMed ID: 28657742 [TBL] [Abstract][Full Text] [Related]
14. Identification of novel and candidate miRNAs in rice by high throughput sequencing. Sunkar R; Zhou X; Zheng Y; Zhang W; Zhu JK BMC Plant Biol; 2008 Feb; 8():25. PubMed ID: 18312648 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. Chen G; Zou Y; Hu J; Ding Y BMC Genomics; 2018 Oct; 19(1):720. PubMed ID: 30285603 [TBL] [Abstract][Full Text] [Related]
16. Activation of rice WRKY transcription factors: an army of stress fighting soldiers? Viana VE; Busanello C; da Maia LC; Pegoraro C; Costa de Oliveira A Curr Opin Plant Biol; 2018 Oct; 45(Pt B):268-275. PubMed ID: 30060992 [TBL] [Abstract][Full Text] [Related]
17. Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM). Teotia S; Zhang D; Tang G Methods Mol Biol; 2017; 1654():337-349. PubMed ID: 28986803 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Fang C; Zhang P; Jian X; Chen W; Lin H; Li Y; Lin W Plant Sci; 2017 Sep; 262():115-126. PubMed ID: 28716407 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). Yu LJ; Luo YF; Liao B; Xie LJ; Chen L; Xiao S; Li JT; Hu SN; Shu WS New Phytol; 2012 Jul; 195(1):97-112. PubMed ID: 22537016 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. Wei R; Qiu D; Wilson IW; Zhao H; Lu S; Miao J; Feng S; Bai L; Wu Q; Tu D; Ma X; Tang Q BMC Genomics; 2015 Oct; 16():835. PubMed ID: 26490136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]