BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26184312)

  • 1. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor.
    Lübker C; Dove S; Tang WJ; Urbauer RJ; Moskovitz J; Urbauer JL; Seifert R
    Toxins (Basel); 2015 Jul; 7(7):2598-614. PubMed ID: 26184312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis.
    Drum CL; Yan SZ; Sarac R; Mabuchi Y; Beckingham K; Bohm A; Grabarek Z; Tang WJ
    J Biol Chem; 2000 Nov; 275(46):36334-40. PubMed ID: 10926933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MD simulations of anthrax edema factor: calmodulin complexes with mutations in the edema factor "switch a" region and docking of 3'-deoxy ATP into the adenylyl cyclase active site of wild-type and mutant edema factor variants.
    Zhao J; Roy SA; Nelson DJ
    J Biomol Struct Dyn; 2003 Oct; 21(2):159-70. PubMed ID: 12956602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor.
    Shen Y; Zhukovskaya NL; Guo Q; Florián J; Tang WJ
    EMBO J; 2005 Mar; 24(5):929-41. PubMed ID: 15719022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
    Guo Q; Jureller JE; Warren JT; Solomaha E; Florián J; Tang WJ
    J Biol Chem; 2008 Aug; 283(35):23836-45. PubMed ID: 18583346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
    Laine E; Yoneda JD; Blondel A; Malliavin TE
    Proteins; 2008 Jun; 71(4):1813-29. PubMed ID: 18175311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium dependence of the interaction between calmodulin and anthrax edema factor.
    Ulmer TS; Soelaiman S; Li S; Klee CB; Tang WJ; Bax A
    J Biol Chem; 2003 Aug; 278(31):29261-6. PubMed ID: 12724328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adenylyl cyclase activity of anthrax edema factor.
    Tang WJ; Guo Q
    Mol Aspects Med; 2009 Dec; 30(6):423-30. PubMed ID: 19560485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and kinetic analyses of the interaction of anthrax adenylyl cyclase toxin with reaction products cAMP and pyrophosphate.
    Guo Q; Shen Y; Zhukovskaya NL; Florián J; Tang WJ
    J Biol Chem; 2004 Jul; 279(28):29427-35. PubMed ID: 15131111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin.
    Lübker C; Urbauer RJ; Moskovitz J; Dove S; Weisemann J; Fedorova M; Urbauer JL; Seifert R
    Biochem Pharmacol; 2015 Jan; 93(2):196-209. PubMed ID: 25462816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding.
    Laine E; Martínez L; Blondel A; Malliavin TE
    Biophys J; 2010 Oct; 99(7):2264-72. PubMed ID: 20923661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases.
    Vougier S; Mary J; Dautin N; Vinh J; Friguet B; Ladant D
    J Biol Chem; 2004 Jul; 279(29):30210-8. PubMed ID: 15148319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of Bacillus anthracis edema factor.
    Seifert R; Dove S
    Pharmacol Ther; 2013 Nov; 140(2):200-12. PubMed ID: 23850654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of anthrax edema factor from Escherichia coli and identification of residues required for binding to anthrax protective antigen.
    Kumar P; Ahuja N; Bhatnagar R
    Infect Immun; 2001 Oct; 69(10):6532-6. PubMed ID: 11553601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin.
    Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL
    Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthrax edema factor toxicity is strongly mediated by the N-end rule.
    Leysath CE; Phillips DD; Crown D; Fattah RJ; Moayeri M; Leppla SH
    PLoS One; 2013; 8(8):e74474. PubMed ID: 24015319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor.
    Lübker C; Seifert R
    PLoS One; 2015; 10(5):e0124017. PubMed ID: 25946093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough.
    Soelaiman S; Wei BQ; Bergson P; Lee YS; Shen Y; Mrksich M; Shoichet BK; Tang WJ
    J Biol Chem; 2003 Jul; 278(28):25990-7. PubMed ID: 12676933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action.
    Göttle M; Dove S; Seifert R
    Toxins (Basel); 2012 Jul; 4(7):505-35. PubMed ID: 22852066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of deletion of the edema factor on Bacillus anthracis pathogenicity in guinea pigs and rabbits.
    Levy H; Weiss S; Altboum Z; Schlomovitz J; Rothschild N; Glinert I; Sittner A; Kobiler D
    Microb Pathog; 2012 Jan; 52(1):55-60. PubMed ID: 22020310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.