These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26184365)

  • 1. Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono- and Multilayers of Iridium Oxygen-Evolution Catalysts.
    Li W; Sheehan SW; He D; He Y; Yao X; Grimm RL; Brudvig GW; Wang D
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11428-32. PubMed ID: 26184365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical activation of Cp* iridium complexes for electrode-driven water-oxidation catalysis.
    Thomsen JM; Sheehan SW; Hashmi SM; Campos J; Hintermair U; Crabtree RH; Brudvig GW
    J Am Chem Soc; 2014 Oct; 136(39):13826-34. PubMed ID: 25188635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.
    Lin Y; Xu Y; Mayer MT; Simpson ZI; McMahon G; Zhou S; Wang D
    J Am Chem Soc; 2012 Mar; 134(12):5508-11. PubMed ID: 22397372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of iridium-based molecular catalysts during water oxidation with ceric ammonium nitrate.
    Grotjahn DB; Brown DB; Martin JK; Marelius DC; Abadjian MC; Tran HN; Kalyuzhny G; Vecchio KS; Specht ZG; Cortes-Llamas SA; Miranda-Soto V; van Niekerk C; Moore CE; Rheingold AL
    J Am Chem Soc; 2011 Nov; 133(47):19024-7. PubMed ID: 22059883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-/Multinuclear Water Oxidation Catalysts.
    Zhang Q; Guan J
    ChemSusChem; 2019 Jul; 12(14):3209-3235. PubMed ID: 31077565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis.
    Zahran ZN; Tsubonouchi Y; Mohamed EA; Yagi M
    ChemSusChem; 2019 May; 12(9):1775-1793. PubMed ID: 30793506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes.
    Iandolo B; Wickman B; Seger B; Chorkendorff I; Zorić I; Hellman A
    Phys Chem Chem Phys; 2014 Jan; 16(3):1271-5. PubMed ID: 24297250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting.
    Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X
    J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.
    McCrory CC; Jung S; Ferrer IM; Chatman SM; Peters JC; Jaramillo TF
    J Am Chem Soc; 2015 Apr; 137(13):4347-57. PubMed ID: 25668483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts.
    Morales-Guio CG; Liardet L; Mayer MT; Tilley SD; Grätzel M; Hu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):664-7. PubMed ID: 25403656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation.
    Hong YR; Liu Z; Al-Bukhari SF; Lee CJ; Yung DL; Chi D; Hor TS
    Chem Commun (Camb); 2011 Oct; 47(38):10653-5. PubMed ID: 21881644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Engineering of Hematite with Nacre-like Catalytic Multilayers for Solar Water Oxidation.
    Choi Y; Jeon D; Choi Y; Kim D; Kim N; Gu M; Bae S; Lee T; Lee HW; Kim BS; Ryu J
    ACS Nano; 2019 Jan; 13(1):467-475. PubMed ID: 30512922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.
    Xue LX; Meng TT; Yang W; Wang KZ
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):95-105. PubMed ID: 26164739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ.
    Bloor LG; Molina PI; Symes MD; Cronin L
    J Am Chem Soc; 2014 Feb; 136(8):3304-11. PubMed ID: 24499042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO(x)·nH2O-Catalyzed Water-Splitting Systems.
    Zhao Y; Vargas-Barbosa NM; Strayer ME; McCool NS; Pandelia ME; Saunders TP; Swierk JR; Callejas JF; Jensen L; Mallouk TE
    J Am Chem Soc; 2015 Jul; 137(27):8749-57. PubMed ID: 26106904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical water oxidation with carbon-grafted iridium complexes.
    deKrafft KE; Wang C; Xie Z; Su X; Hinds BJ; Lin W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):608-13. PubMed ID: 22292527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Effects of Nanostructuring and Oxygen Vacancy on Photoelectrochemical Water Oxidation Activity of Superstructured and Defective Hematite Nanorods.
    Wang L; Marcus K; Huang X; Shen Z; Yang Y; Bi Y
    Small; 2018 Apr; 14(14):e1704464. PubMed ID: 29484810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.