These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26184658)

  • 1. Voluntary breathing increases corticospinal excitability of lower limb muscle during isometric contraction.
    Shirakawa K; Yunoki T; Afroundeh R; Lian CS; Matsuura R; Ohtsuka Y; Yano T
    Respir Physiol Neurobiol; 2015 Oct; 217():40-5. PubMed ID: 26184658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary breathing influences corticospinal excitability of nonrespiratory finger muscles.
    Li S; Rymer WZ
    J Neurophysiol; 2011 Feb; 105(2):512-21. PubMed ID: 21160006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
    Weavil JC; Sidhu SK; Mangum TS; Richardson RS; Amann M
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(12):R998-1007. PubMed ID: 25876651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor cortical and corticospinal function differ during an isometric squat compared with isometric knee extension.
    Brownstein CG; Ansdell P; Škarabot J; Frazer A; Kidgell D; Howatson G; Goodall S; Thomas K
    Exp Physiol; 2018 Sep; 103(9):1251-1263. PubMed ID: 29928769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors.
    Doguet V; Nosaka K; Guével A; Thickbroom G; Ishimura K; Jubeau M
    Exp Physiol; 2017 Nov; 102(11):1513-1523. PubMed ID: 28796385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of fascicle strain and corticospinal excitability during eccentric contractions on force loss.
    Doguet V; Nosaka K; Guével A; Ishimura K; Guilhem G; Jubeau M
    Exp Physiol; 2019 Oct; 104(10):1532-1543. PubMed ID: 31374136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticospinal excitability during shortening and lengthening actions with incremental torque output.
    Škarabot J; Tallent J; Goodall S; Durbaba R; Howatson G
    Exp Physiol; 2018 Dec; 103(12):1586-1592. PubMed ID: 30286253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
    Hoffman BW; Oya T; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2009 Jul; 107(1):112-20. PubMed ID: 19443741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise.
    Gruet M; Temesi J; Rupp T; Levy P; Verges S; Millet GY
    Exp Physiol; 2014 Aug; 99(8):1053-64. PubMed ID: 24907029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical activity modulates corticospinal excitability of the lower limb in young and old adults.
    Hassanlouei H; Sundberg CW; Smith AE; Kuplic A; Hunter SK
    J Appl Physiol (1985); 2017 Aug; 123(2):364-374. PubMed ID: 28495848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-limb modulations of posterior root-muscle reflexes evoked from the lower-limb muscles during isometric voluntary contractions.
    Saito A; Nakagawa K; Masugi Y; Nakazawa K
    Exp Brain Res; 2021 Oct; 239(10):3035-3043. PubMed ID: 34363090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal excitability and somatosensory information processing of the lower limb muscle during upper limb voluntary or electrically induced muscle contractions.
    Kato T; Kaneko N; Sasaki A; Endo N; Yuasa A; Milosevic M; Watanabe K; Nakazawa K
    Eur J Neurosci; 2022 Apr; 55(7):1810-1824. PubMed ID: 35274383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task- and Intensity-Dependent Modulation of Arm-Trunk Neural Interactions in the Corticospinal Pathway in Humans.
    Sasaki A; Kaneko N; Masugi Y; Kato T; Milosevic M; Nakazawa K
    eNeuro; 2021; 8(5):. PubMed ID: 34503966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Output of human motoneuron pools to corticospinal inputs during voluntary contractions.
    Martin PG; Gandevia SC; Taylor JL
    J Neurophysiol; 2006 Jun; 95(6):3512-8. PubMed ID: 16481454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of simultaneous contractions of ipsilateral muscles on changes in corticospinal excitability induced by paired associative stimulation (PAS).
    Kennedy NC; Carson RG
    Neurosci Lett; 2008 Nov; 445(1):7-11. PubMed ID: 18771706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths.
    Oya T; Hoffman BW; Cresswell AG
    J Appl Physiol (1985); 2008 Nov; 105(5):1527-32. PubMed ID: 18787089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for existence of trunk-limb neural interaction in the corticospinal pathway.
    Sasaki A; Milosevic M; Sekiguchi H; Nakazawa K
    Neurosci Lett; 2018 Mar; 668():31-36. PubMed ID: 29309857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.