These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26184698)

  • 1. High-throughput screening of cellular redox sensors using modern redox proteomics approaches.
    Jiang J; Wang K; Nice EC; Zhang T; Huang C
    Expert Rev Proteomics; 2015; 12(5):543-55. PubMed ID: 26184698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-based redox proteomics in cancer research.
    Yuan K; Liu Y; Chen HN; Zhang L; Lan J; Gao W; Dou Q; Nice EC; Huang C
    Proteomics; 2015 Jan; 15(2-3):287-99. PubMed ID: 25251260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics.
    Bykova NV; Rampitsch C
    Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis.
    Zhou L; Wen J; Huang Z; Nice EC; Huang C; Zhang H; Li Q
    Proteomics Clin Appl; 2017 Mar; 11(3-4):. PubMed ID: 27763721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A redox proteomics approach to investigate the mode of action of nanomaterials.
    Riebeling C; Wiemann M; Schnekenburger J; Kuhlbusch TA; Wohlleben W; Luch A; Haase A
    Toxicol Appl Pharmacol; 2016 May; 299():24-9. PubMed ID: 26827820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities.
    Yang W; Zou L; Huang C; Lei Y
    Drug Dev Res; 2014 Aug; 75(5):331-41. PubMed ID: 25160073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis.
    Zhou S; Liu R; Yuan K; Yi T; Zhao X; Huang C; Wei Y
    Mass Spectrom Rev; 2013; 32(4):267-311. PubMed ID: 23165949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox proteomics and drug development.
    D'Alessandro A; Rinalducci S; Zolla L
    J Proteomics; 2011 Nov; 74(12):2575-95. PubMed ID: 21241836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion.
    Sonego G; Abonnenc M; Tissot JD; Prudent M; Lion N
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein redox modification by hypoxia.
    Choi KS; Park SY; Baek SH; Dey-Rao R; Park YM; Zhang H; Ip C; Park EM; Kim YH; Park JH
    Prep Biochem Biotechnol; 2006; 36(1):65-79. PubMed ID: 16428139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.