BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26184698)

  • 1. High-throughput screening of cellular redox sensors using modern redox proteomics approaches.
    Jiang J; Wang K; Nice EC; Zhang T; Huang C
    Expert Rev Proteomics; 2015; 12(5):543-55. PubMed ID: 26184698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-based redox proteomics in cancer research.
    Yuan K; Liu Y; Chen HN; Zhang L; Lan J; Gao W; Dou Q; Nice EC; Huang C
    Proteomics; 2015 Jan; 15(2-3):287-99. PubMed ID: 25251260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics.
    Bykova NV; Rampitsch C
    Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis.
    Zhou L; Wen J; Huang Z; Nice EC; Huang C; Zhang H; Li Q
    Proteomics Clin Appl; 2017 Mar; 11(3-4):. PubMed ID: 27763721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A redox proteomics approach to investigate the mode of action of nanomaterials.
    Riebeling C; Wiemann M; Schnekenburger J; Kuhlbusch TA; Wohlleben W; Luch A; Haase A
    Toxicol Appl Pharmacol; 2016 May; 299():24-9. PubMed ID: 26827820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities.
    Yang W; Zou L; Huang C; Lei Y
    Drug Dev Res; 2014 Aug; 75(5):331-41. PubMed ID: 25160073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis.
    Zhou S; Liu R; Yuan K; Yi T; Zhao X; Huang C; Wei Y
    Mass Spectrom Rev; 2013; 32(4):267-311. PubMed ID: 23165949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox proteomics and drug development.
    D'Alessandro A; Rinalducci S; Zolla L
    J Proteomics; 2011 Nov; 74(12):2575-95. PubMed ID: 21241836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion.
    Sonego G; Abonnenc M; Tissot JD; Prudent M; Lion N
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein redox modification by hypoxia.
    Choi KS; Park SY; Baek SH; Dey-Rao R; Park YM; Zhang H; Ip C; Park EM; Kim YH; Park JH
    Prep Biochem Biotechnol; 2006; 36(1):65-79. PubMed ID: 16428139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.