These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26184786)

  • 1. Effects of the herbicide dicamba on nontarget plants and pollinator visitation.
    Bohnenblust EW; Vaudo AD; Egan JF; Mortensen DA; Tooker JF
    Environ Toxicol Chem; 2016 Jan; 35(1):144-51. PubMed ID: 26184786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and indirect effects of the synthetic-auxin herbicide dicamba on two lepidopteran species.
    Bohnenblust E; Egan JF; Mortensen D; Tooker J
    Environ Entomol; 2013 Jun; 42(3):586-94. PubMed ID: 23726069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interspecific variation in resistance and tolerance to herbicide drift reveals potential consequences for plant community co-flowering interactions and structure at the agro-eco interface.
    Iriart V; Baucom RS; Ashman TL
    Ann Bot; 2022 Dec; 130(7):1015-1028. PubMed ID: 36415945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage and recovery from drift of synthetic-auxin herbicide dicamba depends on concentration and varies among floral, vegetative, and lifetime traits in rapid cycling Brassica rapa.
    Ramos SE; Rzodkiewicz LD; Turcotte MM; Ashman TL
    Sci Total Environ; 2021 Dec; 801():149732. PubMed ID: 34438156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings.
    Olszyk D; Pfleeger T; Lee EH; Plocher M
    Ecotoxicology; 2015 Jul; 24(5):1014-27. PubMed ID: 25821135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The consequences of synthetic auxin herbicide on plant-herbivore interactions.
    Johnson N; Zhang G; Soble A; Johnson S; Baucom RS
    Trends Plant Sci; 2023 Jul; 28(7):765-775. PubMed ID: 36842859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying vapor drift of dicamba herbicides applied to soybean.
    Egan JF; Mortensen DA
    Environ Toxicol Chem; 2012 May; 31(5):1023-31. PubMed ID: 22362509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles.
    Freydier L; Lundgren JG
    Ecotoxicology; 2016 Aug; 25(6):1270-7. PubMed ID: 27282375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can herbicides of different mode of action cause injury symptoms in non-herbicide-tolerant young soybean due to simulated drift?
    Brochado MGDS; Guidi YM; Lima ADC; Medeiros BAP; D'Angieri R; Mendes KF
    J Environ Sci Health B; 2023; 58(12):726-743. PubMed ID: 37904543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift.
    Vieira BC; Luck JD; Amundsen KL; Gaines TA; Werle R; Kruger GR
    PLoS One; 2019; 14(7):e0220014. PubMed ID: 31318947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp.
    Vieira BC; Luck JD; Amundsen KL; Werle R; Gaines TA; Kruger GR
    Sci Rep; 2020 Feb; 10(1):2146. PubMed ID: 32034222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fertilizer and herbicide alter nectar and pollen quality with consequences for pollinator floral choices.
    Russo L; Ruedenauer F; Gronert A; Van de Vreken I; Vanderplanck M; Michez D; Klein A; Leonhardt S; Stout JC
    PeerJ; 2023; 11():e15452. PubMed ID: 37334137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba.
    Grossmann K; Caspar G; Kwiatkowski J; Bowe SJ
    Pest Manag Sci; 2002 Oct; 58(10):1002-14. PubMed ID: 12400439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant reproduction is altered by simulated herbicide drift to constructed plant communities.
    Olszyk D; Pfleeger T; Shiroyama T; Blakeley-Smith M; Lee EH; Plocher M
    Environ Toxicol Chem; 2017 Oct; 36(10):2799-2813. PubMed ID: 28444907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herbicide Drift from Genetically Engineered Herbicide-Tolerant Crops.
    Sharkey AM; Williams BJ; Parker KM
    Environ Sci Technol; 2021 Dec; 55(23):15559-15568. PubMed ID: 34813302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-resistance to dicamba, 2,4-D, and fluroxypyr in
    LeClere S; Wu C; Westra P; Sammons RD
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E2911-E2920. PubMed ID: 29531066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of soil organic matter on the sensitivity of selected wild and crop species to common herbicides.
    Allison JE; Boutin C; Carpenter D
    Ecotoxicology; 2013 Oct; 22(8):1289-302. PubMed ID: 23996626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants.
    Goodell K; Parker IM
    Ecology; 2017 Jan; 98(1):57-69. PubMed ID: 28052387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.
    Schütte G; Eckerstorfer M; Rastelli V; Reichenbecher W; Restrepo-Vassalli S; Ruohonen-Lehto M; Saucy AW; Mertens M
    Environ Sci Eur; 2017; 29(1):5. PubMed ID: 28163993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.
    Duke SO
    Pest Manag Sci; 2015 May; 71(5):652-7. PubMed ID: 25052888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.