BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26185055)

  • 1. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis.
    San K; Long J; Michels CA; Gadura N
    Microbiologyopen; 2015 Oct; 4(5):753-63. PubMed ID: 26185055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli.
    Hong R; Kang TY; Michels CA; Gadura N
    Appl Environ Microbiol; 2012 Mar; 78(6):1776-84. PubMed ID: 22247141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sporicidal efficacy of thermal-sprayed copper alloy coating.
    Shafaghi R; Mostaghimi J; Pershin V; Ringuette M
    Can J Microbiol; 2017 May; 63(5):384-391. PubMed ID: 28177787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodeposited functionally graded coating inhibits Gram-positive and Gram-negative bacteria by a lipid peroxidation mediated membrane damage mechanism.
    Banthia S; Hazra C; Sen R; Das S; Das K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():623-633. PubMed ID: 31147034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces.
    Chang T; Babu RP; Zhao W; Johnson CM; Hedström P; Odnevall I; Leygraf C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49402-49413. PubMed ID: 34618446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of UV-TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation.
    Zhang Y; Zhou L; Zhang Y
    J Environ Sci (China); 2014 Sep; 26(9):1943-8. PubMed ID: 25193846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of killing of spores of Bacillus subtilis by dimethyldioxirane.
    Paul M; Atluri S; Setlow B; Setlow P
    J Appl Microbiol; 2006 Nov; 101(5):1161-8. PubMed ID: 17040240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Killing of spores of Bacillus subtilis by tert-butyl hydroperoxide plus a TAML activator.
    Paul M; Setlow B; Setlow P
    J Appl Microbiol; 2007 Apr; 102(4):954-62. PubMed ID: 17381738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of modification of membrane lipid composition on Bacillus subtilis sporulation and spore properties.
    Griffiths KK; Setlow P
    J Appl Microbiol; 2009 Jun; 106(6):2064-78. PubMed ID: 19291241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to and killing by the sporicidal microbicide peracetic acid.
    Leggett MJ; Schwarz JS; Burke PA; Mcdonnell G; Denyer SP; Maillard JY
    J Antimicrob Chemother; 2015 Mar; 70(3):773-9. PubMed ID: 25428922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe-EDTA-iodide-ethanol formulation.
    Shapiro MP; Setlow P
    J Appl Microbiol; 2006 Apr; 100(4):746-53. PubMed ID: 16553729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone.
    Young SB; Setlow P
    J Appl Microbiol; 2004; 96(5):1133-42. PubMed ID: 15078531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol Monolaurate (GML) and a Nonaqueous Five-Percent GML Gel Kill
    Schlievert PM; Kilgore SH; Kaus GM; Ho TD; Ellermeier CD
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30463926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure.
    Black EP; Wei J; Atluri S; Cortezzo DE; Koziol-Dube K; Hoover DG; Setlow P
    J Appl Microbiol; 2007 Jan; 102(1):65-76. PubMed ID: 17184321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Killing of Bacillus subtilis spores by a modified Fenton reagent containing CuCl2 and ascorbic acid.
    Shapiro MP; Setlow B; Setlow P
    Appl Environ Microbiol; 2004 Apr; 70(4):2535-9. PubMed ID: 15066856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions.
    Perkins AE; Schuerger AC; Nicholson WL
    Astrobiology; 2008 Dec; 8(6):1159-67. PubMed ID: 19191541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress.
    Cortezzo DE; Koziol-Dube K; Setlow B; Setlow P
    J Appl Microbiol; 2004; 97(4):838-52. PubMed ID: 15357734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method.
    Huang X; Lu Z; Bie X; Lü F; Zhao H; Yang S
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):454-61. PubMed ID: 17043814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of antimicrobial peptide chrysophsin-3 with Bacillus anthracis in sporulated, germinated, and vegetative states.
    Pinzón-Arango PA; Nagarajan R; Camesano TA
    J Phys Chem B; 2013 May; 117(21):6364-72. PubMed ID: 23631815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.