These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26185113)

  • 1. Why is the tongue of blue-tongued skinks blue? Reflectance of lingual surface and its consequences for visual perception by conspecifics and predators.
    Abramjan A; Bauerová A; Somerová B; Frynta D
    Naturwissenschaften; 2015 Aug; 102(7-8):42. PubMed ID: 26185113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local adaptation and divergence in colour signal conspicuousness between monomorphic and polymorphic lineages in a lizard.
    McLean CA; Moussalli A; Stuart-Fox D
    J Evol Biol; 2014 Dec; 27(12):2654-64. PubMed ID: 25330209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Now you see me, now you don't: iridescence increases the efficacy of lizard chromatic signals.
    Pérez i de Lanuza G; Font E
    Naturwissenschaften; 2014 Oct; 101(10):831-7. PubMed ID: 25129522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models.
    Watson CM; Roelke CE; Pasichnyk PN; Cox CL
    Zoology (Jena); 2012 Oct; 115(5):339-44. PubMed ID: 22938695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How conspicuous are peacock eyespots and other colorful feathers in the eyes of mammalian predators?
    Kane SA; Wang Y; Fang R; Lu Y; Dakin R
    PLoS One; 2019; 14(4):e0210924. PubMed ID: 31017903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication.
    Bybee SM; Yuan F; Ramstetter MD; Llorente-Bousquets J; Reed RD; Osorio D; Briscoe AD
    Am Nat; 2012 Jan; 179(1):38-51. PubMed ID: 22173459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of color variation in dragon lizards: quantitative tests of the role of crypsis and local adaptation.
    Stuart-Fox DM; Moussalli A; Johnston GR; Owens IP
    Evolution; 2004 Jul; 58(7):1549-59. PubMed ID: 15341157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional morphology of lingual prey capture in a scincid lizard, Tiliqua scincoides (Reptilia: Squamata).
    Hewes AE; Schwenk K
    J Morphol; 2021 Jan; 282(1):127-145. PubMed ID: 33090536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-off between camouflage and sexual dimorphism revealed by UV digital imaging: the case of Australian Mallee dragons (Ctenophorus fordi).
    Garcia JE; Rohr D; Dyer AG
    J Exp Biol; 2013 Nov; 216(Pt 22):4290-8. PubMed ID: 23997198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides.
    Geen MR; Johnston GR
    J Therm Biol; 2014 Jul; 43():54-60. PubMed ID: 24956958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced short-wavelength sensitivity in the blue-tongued skink Tiliqua rugosa.
    Nagloo N; Mountford JK; Gundry BJ; Hart NS; Davies WIL; Collin SP; Hemmi JM
    J Exp Biol; 2022 Jun; 225(11):. PubMed ID: 35582824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lingual dorsal surface of the blue-tongue skink (Tiliqua scincoides).
    Abbate F; Latella G; Montalbano G; Guerrera MC; Germanà GP; Levanti MB
    Anat Histol Embryol; 2009 Oct; 38(5):348-50. PubMed ID: 19769569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex identification in juvenile and adult Indonesian blue-tongued skinks (Tiliqua gigas) through cystoscopy and accuracy of contrast radiography.
    Vetere A; Di Girolamo N; Porter I; Tollefson C; Di Ianni F; Nardini G
    J Am Vet Med Assoc; 2023 Dec; 261(12):1-8. PubMed ID: 37673215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in color vision make passerines less conspicuous in the eyes of their predators.
    Håstad O; Victorsson J; Odeen A
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6391-4. PubMed ID: 15851662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards.
    Martin M; Le Galliard JF; Meylan S; Loew ER
    J Exp Biol; 2015 Feb; 218(Pt 3):458-65. PubMed ID: 25524990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The trade-off between color and size in lizards' conspicuous tails.
    Guidi RDS; São-Pedro VA; da Silva HR; Costa GC; Pessoa DMA
    Behav Processes; 2021 Nov; 192():104496. PubMed ID: 34492324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses of avian and mammalian predators to phenotypic variation in Australian Brood Frogs.
    Lawrence JP; Mahony M; Noonan BP
    PLoS One; 2018; 13(4):e0195446. PubMed ID: 29621321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet reflectance and pattern properties in leopard geckos (Eublepharis macularius).
    Abramjan A; Baranová V; Frýdlová P; Landová E; Frynta D
    Behav Processes; 2020 Apr; 173():104060. PubMed ID: 31991157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour.
    Pérez i de Lanuza G; Font E
    J Exp Biol; 2014 Aug; 217(Pt 16):2899-909. PubMed ID: 24902749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why are animals conspicuously colored? Evolution of sexual versus warning signals in land vertebrates.
    Emberts Z; Wiens JJ
    Evolution; 2022 Dec; 76(12):2879-2892. PubMed ID: 36221224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.