BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26185914)

  • 1. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries.
    Hong KS; Nam DH; Lim SJ; Sohn D; Kim TH; Kwon H
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17264-71. PubMed ID: 26185914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Sb/Sb2 O3 Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries.
    Nam DH; Hong KS; Lim SJ; Kim MJ; Kwon HS
    Small; 2015 Jun; 11(24):2885-92. PubMed ID: 25809290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries.
    Chai Y; Du Y; Li L; Wang N
    Nanotechnology; 2020 May; 31(21):215402. PubMed ID: 31986495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core@shell Sb@Sb
    Chen X; Wang L; Ma F; Wang T; Han J; Huang Y; Li Q
    Nanoscale Adv; 2020 Dec; 2(12):5578-5583. PubMed ID: 36133861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries.
    Walter M; Erni R; Kovalenko MV
    Sci Rep; 2015 Feb; 5():8418. PubMed ID: 25673146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A densely packed Sb
    Zhou J; Yan B; Yang J; Yang Y; Zhou W; Lan H; Wang H; Guo L
    Nanoscale; 2018 May; 10(19):9108-9114. PubMed ID: 29718035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries.
    Wang N; Bai Z; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):447-454. PubMed ID: 27982561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode.
    McCulloch WD; Ren X; Yu M; Huang Z; Wu Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26158-66. PubMed ID: 26550678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Carbon/Antimony Composites as Anode Materials for Lithium-Ion Batteries with Long Life.
    Cheng Y; Yi Z; Wang C; Wang L; Wu Y; Wang L
    Chem Asian J; 2016 Aug; 11(15):2173-80. PubMed ID: 27310879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes.
    Qiu S; Wu X; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1337-43. PubMed ID: 26710079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Initial Coulombic Efficiency of Sodium-Storage Antimony Anodes via Electrochemically Alloying Bismuth.
    Li X; Guo Y; Hu Z; Qu J; Ma Q; Wang D; Yin H
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45926-45937. PubMed ID: 37748100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries.
    Liu J; Yu L; Wu C; Wen Y; Yin K; Chiang FK; Hu R; Liu J; Sun L; Gu L; Maier J; Yu Y; Zhu M
    Nano Lett; 2017 Mar; 17(3):2034-2042. PubMed ID: 28191960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of electrochemical behavior of Sb-based porous carbon composites anode for sodium-ion batteries.
    Ma G; Xu C; Zhang D; Che S; Wang Y; Yang J; Chen K; Sun Y; Liu S; Fu J; Zhou Z; Qu Y; Ding C; Li Y
    J Colloid Interface Sci; 2024 Jun; 673():26-36. PubMed ID: 38870665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sb
    Zhou X; Zhang Z; Lu X; Lv X; Ma G; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34927-34936. PubMed ID: 28933532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries.
    Zhang W; Liu Y; Chen C; Li Z; Huang Y; Hu X
    Small; 2015 Aug; 11(31):3822-9. PubMed ID: 25925888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries.
    Wu T; Hou H; Zhang C; Ge P; Huang Z; Jing M; Qiu X; Ji X
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26118-26125. PubMed ID: 28723066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries.
    Wan F; Guo JZ; Zhang XH; Zhang JP; Sun HZ; Yan Q; Han DX; Niu L; Wu XL
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7790-9. PubMed ID: 26960386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal Sb Nanocrystals as High-Capacity and Long-Cycle Anode Materials for Sodium-Ion Batteries.
    Zhang N; Chen X; Xu J; He P; Ding X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26728-26736. PubMed ID: 37218657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.