BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26185914)

  • 21. A flexible Sb
    Fei J; Cui Y; Li J; Xu Z; Yang J; Wang R; Cheng Y; Hang J
    Chem Commun (Camb); 2017 Dec; 53(98):13165-13167. PubMed ID: 29177297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Faceted Antimony Particles with Interiors Reinforced with Reduced Graphene Oxide as High-Performance Anode Material for Sodium-Ion Batteries.
    Amardeep A; Shende RC; Gandharapu P; Wani MS; Mukhopadhyay A
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45296-45307. PubMed ID: 36173298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.
    Ma F; Yuan A; Xu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18129-38. PubMed ID: 25247688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.
    Ji L; Zhou W; Chabot V; Yu A; Xiao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.
    Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries.
    Xu Y; Yi R; Yuan B; Wu X; Dunwell M; Lin Q; Fei L; Deng S; Andersen P; Wang D; Luo H
    J Phys Chem Lett; 2012 Feb; 3(3):309-14. PubMed ID: 26285844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple ambient hydrolysis deposition of tin oxide into nanoporous carbon to give a stable anode for lithium-ion batteries.
    Raju V; Wang X; Luo W; Ji X
    Chemistry; 2014 Jun; 20(25):7686-91. PubMed ID: 24804844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.
    Qian J; Chen Y; Wu L; Cao Y; Ai X; Yang H
    Chem Commun (Camb); 2012 Jul; 48(56):7070-2. PubMed ID: 22684188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries.
    Tian W; Zhang S; Huo C; Zhu D; Li Q; Wang L; Ren X; Xie L; Guo S; Chu PK; Zeng H; Huo K
    ACS Nano; 2018 Feb; 12(2):1887-1893. PubMed ID: 29370516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries.
    Nam DH; Kim TH; Hong KS; Kwon HS
    ACS Nano; 2014 Nov; 8(11):11824-35. PubMed ID: 25350724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene-Loaded Bi
    Li D; Zhou J; Chen X; Song H
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30379-30387. PubMed ID: 30113813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SnP
    Verma R; Didwal PN; Ki HS; Cao G; Park CJ
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26976-26984. PubMed ID: 31251558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Reversible and Superior Li-Storage Characteristics of Layered GeS
    Sung GK; Jeon KJ; Park CM
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29543-29550. PubMed ID: 27734665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries.
    Cao X; Shi Y; Shi W; Rui X; Yan Q; Kong J; Zhang H
    Small; 2013 Oct; 9(20):3433-8. PubMed ID: 23637090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Alloying Strategy for Exceptional Potassium Ion Batteries.
    Wang J; Fan L; Liu Z; Chen S; Zhang Q; Wang L; Yang H; Yu X; Lu B
    ACS Nano; 2019 Mar; 13(3):3703-3713. PubMed ID: 30811177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Si-Sb-ZnO Composites as High-Performance Anodes for Lithium-ion Batteries.
    Li Y; Huang L; Zhang P; Ren X; Deng L
    Nanoscale Res Lett; 2015 Dec; 10(1):414. PubMed ID: 26494236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binder-Free Anodes for Potassium-ion Batteries Comprising Antimony Nanoparticles on Carbon Nanotubes Obtained Using Electrophoretic Deposition.
    Pham XM; Abdul Ahad S; Patil NN; Zubair M; Mushtaq M; Gao H; Owusu KA; Kennedy T; Geaney H; Singh S; Ryan KM
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38946438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super long-life potassium-ion batteries based on an antimony@carbon composite anode.
    Liu Q; Fan L; Ma R; Chen S; Yu X; Yang H; Xie Y; Han X; Lu B
    Chem Commun (Camb); 2018 Oct; 54(83):11773-11776. PubMed ID: 30277235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.