These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 26186000)
1. Remodeling of Mitochondrial Flashes in Muscular Development and Dystrophy in Zebrafish. Zhang M; Sun T; Jian C; Lei L; Han P; Lv Q; Yang R; Zhou X; Xu J; Hu Y; Men Y; Huang Y; Zhang C; Zhu X; Wang X; Cheng H; Xiong JW PLoS One; 2015; 10(7):e0132567. PubMed ID: 26186000 [TBL] [Abstract][Full Text] [Related]
2. Spatio-Temporal Differences in Dystrophin Dynamics at mRNA and Protein Levels Revealed by a Novel FlipTrap Line. Ruf-Zamojski F; Trivedi V; Fraser SE; Trinh le A PLoS One; 2015; 10(6):e0128944. PubMed ID: 26083378 [TBL] [Abstract][Full Text] [Related]
3. Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. Shang W; Gao H; Lu F; Ma Q; Fang H; Sun T; Xu J; Ding Y; Lin Y; Wang Y; Wang X; Cheng H; Zheng M J Mol Cell Cardiol; 2016 Feb; 91():63-71. PubMed ID: 26746144 [TBL] [Abstract][Full Text] [Related]
4. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions. Webb SE; Cheung CC; Chan CM; Love DR; Miller AL Clin Exp Pharmacol Physiol; 2012 Jan; 39(1):78-86. PubMed ID: 21824171 [TBL] [Abstract][Full Text] [Related]
5. Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. Ding Y; Fang H; Shang W; Xiao Y; Sun T; Hou N; Pan L; Sun X; Ma Q; Zhou J; Wang X; Zhang X; Cheng H J Mol Med (Berl); 2015 Oct; 93(10):1119-30. PubMed ID: 25908643 [TBL] [Abstract][Full Text] [Related]
6. Skeletal muscle mitoflashes, pH, and the role of uncoupling protein-3. McBride S; Wei-LaPierre L; McMurray F; MacFarlane M; Qiu X; Patten DA; Dirksen RT; Harper ME Arch Biochem Biophys; 2019 Mar; 663():239-248. PubMed ID: 30659802 [TBL] [Abstract][Full Text] [Related]
7. Substrate-dependent and cyclophilin D-independent regulation of mitochondrial flashes in skeletal and cardiac muscle. Wei-LaPierre L; Ainbinder A; Tylock KM; Dirksen RT Arch Biochem Biophys; 2019 Apr; 665():122-131. PubMed ID: 30872061 [TBL] [Abstract][Full Text] [Related]
8. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics. Li W; Sun T; Liu B; Wu D; Qi W; Wang X; Ma Q; Cheng H Sci Rep; 2016 Sep; 6():32933. PubMed ID: 27623243 [TBL] [Abstract][Full Text] [Related]
9. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish. Housley MP; Njaine B; Ricciardi F; Stone OA; Hölper S; Krüger M; Kostin S; Stainier DY PLoS Genet; 2016 Jun; 12(6):e1006099. PubMed ID: 27294373 [TBL] [Abstract][Full Text] [Related]
10. The stress responsive gene ankrd1a is dynamically regulated during skeletal muscle development and upregulated following cardiac injury in border zone cardiomyocytes in adult zebrafish. Boskovic S; Marín Juez R; Stamenkovic N; Radojkovic D; Stainier DY; Kojic S Gene; 2021 Aug; 792():145725. PubMed ID: 34010705 [TBL] [Abstract][Full Text] [Related]
11. Marf-mediated mitochondrial fusion is imperative for the development and functioning of indirect flight muscles (IFMs) in drosophila. Katti P; Rai M; Srivastava S; D'Silva P; Nongthomba U Exp Cell Res; 2021 Feb; 399(2):112486. PubMed ID: 33450208 [TBL] [Abstract][Full Text] [Related]
12. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth. Si Y; Wen H; Du S Mar Biotechnol (NY); 2019 Feb; 21(1):111-123. PubMed ID: 30467785 [TBL] [Abstract][Full Text] [Related]
13. Dysferlin and the plasma membrane repair in muscular dystrophy. Bansal D; Campbell KP Trends Cell Biol; 2004 Apr; 14(4):206-13. PubMed ID: 15066638 [TBL] [Abstract][Full Text] [Related]
14. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Paone C; Rudeck S; Etard C; Strähle U; Rottbauer W; Just S Biochem Biophys Res Commun; 2018 Feb; 496(2):339-345. PubMed ID: 29331378 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of mitoflash excited by femtosecond laser. Wang S; Hu M; He H J Biomed Opt; 2018 Jun; 23(6):1-6. PubMed ID: 29952149 [TBL] [Abstract][Full Text] [Related]
16. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Higashijima S; Okamoto H; Ueno N; Hotta Y; Eguchi G Dev Biol; 1997 Dec; 192(2):289-99. PubMed ID: 9441668 [TBL] [Abstract][Full Text] [Related]
17. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Bassett DI; Bryson-Richardson RJ; Daggett DF; Gautier P; Keenan DG; Currie PD Development; 2003 Dec; 130(23):5851-60. PubMed ID: 14573513 [TBL] [Abstract][Full Text] [Related]
18. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Zhang W; Roy S Dev Biol; 2017 Mar; 423(1):24-33. PubMed ID: 28161523 [TBL] [Abstract][Full Text] [Related]
19. Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the mylz2 promoter. Ju B; Chong SW; He J; Wang X; Xu Y; Wan H; Tong Y; Yan T; Korzh V; Gong Z Dev Dyn; 2003 May; 227(1):14-26. PubMed ID: 12701095 [TBL] [Abstract][Full Text] [Related]
20. The zebrafish runzel muscular dystrophy is linked to the titin gene. Steffen LS; Guyon JR; Vogel ED; Howell MH; Zhou Y; Weber GJ; Zon LI; Kunkel LM Dev Biol; 2007 Sep; 309(2):180-92. PubMed ID: 17678642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]