These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 26186168)
1. Imaging-Guided Drug Release from Glutathione-Responsive Supramolecular Porphysome Nanovesicles. Xu XD; Zhao L; Qu Q; Wang JG; Shi H; Zhao Y ACS Appl Mater Interfaces; 2015 Aug; 7(31):17371-80. PubMed ID: 26186168 [TBL] [Abstract][Full Text] [Related]
2. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates. Zhang L; Li Y; Jin Z; Yu JC; Chan KM Nanoscale; 2015 Aug; 7(29):12614-24. PubMed ID: 26147639 [TBL] [Abstract][Full Text] [Related]
3. pH and Glutathione Dual-Responsive Dynamic Cross-Linked Supramolecular Network on Mesoporous Silica Nanoparticles for Controlled Anticancer Drug Release. Li QL; Xu SH; Zhou H; Wang X; Dong B; Gao H; Tang J; Yang YW ACS Appl Mater Interfaces; 2015 Dec; 7(51):28656-64. PubMed ID: 26633741 [TBL] [Abstract][Full Text] [Related]
4. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation and Toxicity of Protease/Redox/pH Stimuli-Responsive PEGlated PMAA Nanohydrogels for Targeting Drug delivery. Jin S; Wan J; Meng L; Huang X; Guo J; Liu L; Wang C ACS Appl Mater Interfaces; 2015 Sep; 7(35):19843-52. PubMed ID: 26288386 [TBL] [Abstract][Full Text] [Related]
6. Core-shell tecto dendrimers formed via host-guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. Wang J; Li D; Fan Y; Shi M; Yang Y; Wang L; Peng Y; Shen M; Shi X Nanoscale; 2019 Nov; 11(46):22343-22350. PubMed ID: 31728477 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of porphyrin-grafted lipid into nanoparticles encapsulating doxorubicin for synergistic chemo-photodynamic therapy and fluorescence imaging. Hameed S; Bhattarai P; Liang X; Zhang N; Xu Y; Chen M; Dai Z Theranostics; 2018; 8(19):5501-5518. PubMed ID: 30555560 [TBL] [Abstract][Full Text] [Related]
8. Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. Sukhorukova IV; Zhitnyak IY; Kovalskii AM; Matveev AT; Lebedev OI; Li X; Gloushankova NA; Golberg D; Shtansky DV ACS Appl Mater Interfaces; 2015 Aug; 7(31):17217-25. PubMed ID: 26192448 [TBL] [Abstract][Full Text] [Related]
9. Dual Stimuli-Responsive Nanoparticles for Controlled Release of Anticancer and Anti-inflammatory Drugs Combination. Feng L; Wang Y; Luo Z; Huang Z; Zhang Y; Guo K; Ye D Chemistry; 2017 Jul; 23(39):9397-9406. PubMed ID: 28489292 [TBL] [Abstract][Full Text] [Related]
10. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. Wang G; Maciel D; Wu Y; Rodrigues J; Shi X; Yuan Y; Liu C; Tomás H; Li Y ACS Appl Mater Interfaces; 2014 Oct; 6(19):16687-95. PubMed ID: 25167168 [TBL] [Abstract][Full Text] [Related]
11. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Lin JT; Liu ZK; Zhu QL; Rong XH; Liang CL; Wang J; Ma D; Sun J; Wang GH Colloids Surf B Biointerfaces; 2017 Jul; 155():41-50. PubMed ID: 28407530 [TBL] [Abstract][Full Text] [Related]
12. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. Chen H; Wang Z; Zong S; Wu L; Chen P; Zhu D; Wang C; Xu S; Cui Y ACS Appl Mater Interfaces; 2014 Oct; 6(20):17526-33. PubMed ID: 25272041 [TBL] [Abstract][Full Text] [Related]
13. AIE/FRET-based versatile PEG-Pep-TPE/DOX nanoparticles for cancer therapy and real-time drug release monitoring. Wang TT; Wei QC; Zhang ZT; Lin MT; Chen JJ; Zhou Y; Guo NN; Zhong XC; Xu WH; Liu ZX; Han M; Gao JQ Biomater Sci; 2020 Jan; 8(1):118-124. PubMed ID: 31777865 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Wiradharma N; Tong YW; Yang YY Biomaterials; 2009 Jun; 30(17):3100-9. PubMed ID: 19342093 [TBL] [Abstract][Full Text] [Related]
15. Glutathione-triggered "off-on" release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. Wang X; Cai X; Hu J; Shao N; Wang F; Zhang Q; Xiao J; Cheng Y J Am Chem Soc; 2013 Jul; 135(26):9805-10. PubMed ID: 23789713 [TBL] [Abstract][Full Text] [Related]
16. Intracellular pH-sensitive metallo-supramolecular nanogels for anticancer drug delivery. Yao X; Chen L; Chen X; Zhang Z; Zheng H; He C; Zhang J; Chen X ACS Appl Mater Interfaces; 2014 May; 6(10):7816-22. PubMed ID: 24758547 [TBL] [Abstract][Full Text] [Related]
17. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Ma X; Teh C; Zhang Q; Borah P; Choong C; Korzh V; Zhao Y Antioxid Redox Signal; 2014 Aug; 21(5):707-22. PubMed ID: 23931896 [TBL] [Abstract][Full Text] [Related]
18. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms. Kulkarni B; Surnar B; Jayakannan M Biomacromolecules; 2016 Mar; 17(3):1004-16. PubMed ID: 26842888 [TBL] [Abstract][Full Text] [Related]
19. PEGylated hyperbranched polyphosphoester based nanocarriers for redox-responsive delivery of doxorubicin. Chen C; Zheng P; Cao Z; Ma Y; Li J; Qian H; Tao W; Yang X Biomater Sci; 2016 Mar; 4(3):412-7. PubMed ID: 26626655 [TBL] [Abstract][Full Text] [Related]
20. Tumor Targeting Synergistic Drug Delivery by Self-Assembled Hybrid Nanovesicles to Overcome Drug Resistance. Gong MQ; Wu C; He XY; Zong JY; Wu JL; Zhuo RX; Cheng SX Pharm Res; 2017 Jan; 34(1):148-160. PubMed ID: 27738951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]