These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 26186183)

  • 1. Negative-Strand RNA Virus L Proteins: One Machine, Many Activities.
    Das K; Arnold E
    Cell; 2015 Jul; 162(2):239-241. PubMed ID: 26186183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the L Protein of Vesicular Stomatitis Virus from Electron Cryomicroscopy.
    Liang B; Li Z; Jenni S; Rahmeh AA; Morin BM; Grant T; Grigorieff N; Harrison SC; Whelan SPJ
    Cell; 2015 Jul; 162(2):314-327. PubMed ID: 26144317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-functional priming-capping loop of rhabdoviral RNA polymerases directs terminal de novo initiation and capping intermediate formation.
    Ogino M; Gupta N; Green TJ; Ogino T
    Nucleic Acids Res; 2019 Jan; 47(1):299-309. PubMed ID: 30395342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular architecture of the vesicular stomatitis virus RNA polymerase.
    Rahmeh AA; Schenk AD; Danek EI; Kranzusch PJ; Liang B; Walz T; Whelan SP
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):20075-80. PubMed ID: 21041632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The multifunctional RNA polymerase L protein of non-segmented negative strand RNA viruses catalyzes unique mRNA capping].
    Ogino T
    Uirusu; 2014; 64(2):165-78. PubMed ID: 26437839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases.
    Reguera J; Gerlach P; Cusack S
    Curr Opin Struct Biol; 2016 Feb; 36():75-84. PubMed ID: 26826467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses.
    Connor JH; McKenzie MO; Parks GD; Lyles DS
    Virology; 2007 May; 362(1):109-19. PubMed ID: 17258257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into RNA polymerases of negative-sense RNA viruses.
    Te Velthuis AJW; Grimes JM; Fodor E
    Nat Rev Microbiol; 2021 May; 19(5):303-318. PubMed ID: 33495561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase.
    Qiu S; Ogino M; Luo M; Ogino T; Green TJ
    J Virol; 2016 Jan; 90(2):715-24. PubMed ID: 26512087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme-pRNA intermediate formation.
    Neubauer J; Ogino M; Green TJ; Ogino T
    Nucleic Acids Res; 2016 Jan; 44(1):330-41. PubMed ID: 26602696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a new region in the vesicular stomatitis virus L polymerase protein which is essential for mRNA cap methylation.
    Grdzelishvili VZ; Smallwood S; Tower D; Hall RL; Hunt DM; Moyer SA
    Virology; 2006 Jul; 350(2):394-405. PubMed ID: 16537083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique capping activity of the recombinant RNA polymerase (L) of vesicular stomatitis virus: association of cellular capping enzyme with the L protein.
    Gupta AK; Mathur M; Banerjee AK
    Biochem Biophys Res Commun; 2002 Apr; 293(1):264-8. PubMed ID: 12054594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus.
    Li J; Wang JT; Whelan SP
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8493-8. PubMed ID: 16709677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of elongation complexes for T7 RNA polymerase].
    Limanskaia OIu; Limanskiĭ AP
    Biofizika; 2012; 57(4):573-88. PubMed ID: 23035523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicular stomatitis virus polymerase's strong affinity to its template suggests exotic transcription models.
    Tang X; Bendjennat M; Saffarian S
    PLoS Comput Biol; 2014 Dec; 10(12):e1004004. PubMed ID: 25501005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A.
    Zhang X; Walker SB; Chipman PR; Nibert ML; Baker TS
    Nat Struct Biol; 2003 Dec; 10(12):1011-8. PubMed ID: 14608373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicular stomatitis virus: mode of transcription.
    Banerjee AD; Abraham G; Colonno RJ
    J Gen Virol; 1977 Jan; 34(1):1-8. PubMed ID: 188975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains.
    Poch O; Blumberg BM; Bougueleret L; Tordo N
    J Gen Virol; 1990 May; 71 ( Pt 5)():1153-62. PubMed ID: 2161049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation.
    Li J; Chorba JS; Whelan SP
    J Virol; 2007 Apr; 81(8):4104-15. PubMed ID: 17301155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response to "Non-segmented negative-strand RNA virus RNA synthesis in vivo".
    Banerjee AK
    Virology; 2008 Feb; 371(2):231-3. PubMed ID: 18155123
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.