These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 26186197)
1. Raman Spectroscopic Techniques for Planetary Exploration: Detecting Microorganisms through Minerals. Verkaaik MF; Hooijschuur JH; Davies GR; Ariese F Astrobiology; 2015 Aug; 15(8):697-707. PubMed ID: 26186197 [TBL] [Abstract][Full Text] [Related]
2. Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration. Edwards HG; Mohsin MA; Sadooni FN; Nik Hassan NF; Munshi T Anal Bioanal Chem; 2006 May; 385(1):46-56. PubMed ID: 16607492 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Osterrothová K; Jehlicka J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):576-80. PubMed ID: 18980859 [TBL] [Abstract][Full Text] [Related]
4. Raman spectroscopic identification of phthalic and mellitic acids in mineral matrices. Osterrothová K; Jehlička J Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1092-8. PubMed ID: 20870453 [TBL] [Abstract][Full Text] [Related]
5. Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology. Alajtal AI; Edwards HGM; Scowen IJ Anal Bioanal Chem; 2010 May; 397(1):215-221. PubMed ID: 20020110 [TBL] [Abstract][Full Text] [Related]
6. Detection of carotenoids of halophilic prokaryotes in solid inclusions inside laboratory-grown chloride and sulfate crystals using a portable Raman spectrometer: applications for Mars exploration. Culka A; Košek F; Oren A; Mana L; Jehlička J FEMS Microbiol Lett; 2019 Oct; 366(20):. PubMed ID: 31804687 [TBL] [Abstract][Full Text] [Related]
7. UV Raman spectroscopy--a technique for biological and mineralogical in situ planetary studies. Tarcea N; Harz M; Rösch P; Frosch T; Schmitt M; Thiele H; Hochleitner R; Popp J Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1029-35. PubMed ID: 17890146 [TBL] [Abstract][Full Text] [Related]
8. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration. Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta TE; Bates DE Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):75-81. PubMed ID: 21333587 [TBL] [Abstract][Full Text] [Related]
9. The detection of biomarkers in evaporite matrices using a portable Raman instrument under Alpine conditions. Culka A; Jehlička J; Vandenabeele P; Edwards HG Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):8-13. PubMed ID: 21237702 [TBL] [Abstract][Full Text] [Related]
10. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers. Malherbe C; Hutchinson IB; McHugh M; Ingley R; Jehlička J; Edwards HGM Astrobiology; 2017 Apr; 17(4):351-362. PubMed ID: 28418705 [TBL] [Abstract][Full Text] [Related]
11. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars. Jorge-Villar SE; Edwards HG; Benning LG; Anal Bioanal Chem; 2011 Nov; 401(9):2927-33. PubMed ID: 21938598 [TBL] [Abstract][Full Text] [Related]
12. Raman signal processing software for automated identification of mineral phases and biosignatures on Mars. Sobron P; Sobron F; Sanz A; Rull F Appl Spectrosc; 2008 Apr; 62(4):364-70. PubMed ID: 18416892 [TBL] [Abstract][Full Text] [Related]
13. Investigation of biomolecules trapped in fluid inclusions inside halite crystals by Raman spectroscopy. Osterrothová K; Jehlička J Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):288-96. PubMed ID: 21930419 [TBL] [Abstract][Full Text] [Related]
14. The use of surface-enhanced Raman scattering for detecting molecular evidence of life in rocks, sediments, and sedimentary deposits. Bowden SA; Wilson R; Cooper JM; Parnell J Astrobiology; 2010; 10(6):629-41. PubMed ID: 20735253 [TBL] [Abstract][Full Text] [Related]
15. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Edwards HG; Villar SE; Parnell J; Cockell CS; Lee P Analyst; 2005 Jun; 130(6):917-23. PubMed ID: 15912241 [TBL] [Abstract][Full Text] [Related]
16. Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals. Culka A; Jehlička J; Strnad L Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():347-50. PubMed ID: 22100732 [TBL] [Abstract][Full Text] [Related]
17. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration. Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta T Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3167-91. PubMed ID: 20529953 [TBL] [Abstract][Full Text] [Related]
19. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Edwards HG; Hutchinson I; Ingley R Anal Bioanal Chem; 2012 Oct; 404(6-7):1723-31. PubMed ID: 22865011 [TBL] [Abstract][Full Text] [Related]
20. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy. Winters YD; Lowenstein TK; Timofeeff MN Astrobiology; 2013 Nov; 13(11):1065-80. PubMed ID: 24283928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]