BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 26186260)

  • 1. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.
    Huang Z; Lei X; Liu Y; Wang Z; Wang X; Wang Z; Mao Q; Meng G
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17247-54. PubMed ID: 26186260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy.
    Bao ZY; Lei DY; Jiang R; Liu X; Dai J; Wang J; Chan HL; Tsang YH
    Nanoscale; 2014 Aug; 6(15):9063-70. PubMed ID: 24976250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.
    Bi X; Li X; Chen D; Du X
    ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.
    Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D
    Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method.
    Zhou F; Liu Y; Wang H; Wei Y; Zhang G; Ye H; Chen M; Ling D
    Opt Express; 2020 Mar; 28(5):6648-6662. PubMed ID: 32225908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable fabrication on iron oxide/Au/Ag nanostructures for surface enhanced Raman spectroscopy and magnetic enrichment.
    Han SY; Guo QH; Xu MM; Yuan YX; Shen LM; Yao JL; Liu W; Gu RA
    J Colloid Interface Sci; 2012 Jul; 378(1):51-7. PubMed ID: 22583528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting.
    Kwak J; Lee W; Kim JB; Bae SI; Jeong KH
    J Biomed Opt; 2019 Mar; 24(3):1-6. PubMed ID: 30873763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Tapered Fiber Decorated by Ag Nanoparticles for Raman Measurement with High Sensitivity.
    Li T; Yu Z; Wang Z; Zhu Y; Zhang J
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes.
    Cao J; Zhao D; Qin Y
    Talanta; 2019 Mar; 194():895-902. PubMed ID: 30609621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method.
    Fan Q; Cao J; Liu Y; Yao B; Mao Q
    Appl Opt; 2013 Sep; 52(25):6163-9. PubMed ID: 24085073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally activated Cu/Cu2S/ZnO nanoarchitectures with surface-plasmon-enhanced Raman scattering.
    Lin YG; Hsu YK; Chuang CJ; Lin YC; Chen YC
    J Colloid Interface Sci; 2016 Feb; 464():66-72. PubMed ID: 26609924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures.
    Lee DJ; Kim DY
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.