These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922 [TBL] [Abstract][Full Text] [Related]
5. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. Jassas RS; Mughal EU; Sadiq A; Alsantali RI; Al-Rooqi MM; Naeem N; Moussa Z; Ahmed SA RSC Adv; 2021 Sep; 11(51):32158-32202. PubMed ID: 35495486 [TBL] [Abstract][Full Text] [Related]
6. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Narita A; Chen Z; Chen Q; Müllen K Chem Sci; 2019 Jan; 10(4):964-975. PubMed ID: 30774890 [TBL] [Abstract][Full Text] [Related]
7. From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. Simonov KA; Vinogradov NA; Vinogradov AS; Generalov AV; Zagrebina EM; Svirskiy GI; Cafolla AA; Carpy T; Cunniffe JP; Taketsugu T; Lyalin A; Mårtensson N; Preobrajenski AB ACS Nano; 2015 Sep; 9(9):8997-9011. PubMed ID: 26301684 [TBL] [Abstract][Full Text] [Related]
8. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Chen Z; Narita A; Müllen K Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Narita A; Feng X; Hernandez Y; Jensen SA; Bonn M; Yang H; Verzhbitskiy IA; Casiraghi C; Hansen MR; Koch AH; Fytas G; Ivasenko O; Li B; Mali KS; Balandina T; Mahesh S; De Feyter S; Müllen K Nat Chem; 2014 Feb; 6(2):126-32. PubMed ID: 24451588 [TBL] [Abstract][Full Text] [Related]
11. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
12. Bottom-Up Synthesis of Necklace-Like Graphene Nanoribbons. Schwab MG; Narita A; Osella S; Hu Y; Maghsoumi A; Mavrinsky A; Pisula W; Castiglioni C; Tommasini M; Beljonne D; Feng X; Müllen K Chem Asian J; 2015 Oct; 10(10):2134-8. PubMed ID: 26062724 [TBL] [Abstract][Full Text] [Related]
13. Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. Liu J; Mishra S; Pignedoli CA; Passerone D; Urgel JI; Fabrizio A; Lohr TG; Ma J; Komber H; Baumgarten M; Corminboeuf C; Berger R; Ruffieux P; Müllen K; Fasel R; Feng X J Am Chem Soc; 2019 Jul; 141(30):12011-12020. PubMed ID: 31299150 [TBL] [Abstract][Full Text] [Related]
14. Structurally defined graphene nanoribbons with high lateral extension. Schwab MG; Narita A; Hernandez Y; Balandina T; Mali KS; De Feyter S; Feng X; Müllen K J Am Chem Soc; 2012 Nov; 134(44):18169-72. PubMed ID: 23082776 [TBL] [Abstract][Full Text] [Related]
15. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Biagiotti G; Perini I; Richichi B; Cicchi S Molecules; 2021 Oct; 26(20):. PubMed ID: 34684887 [TBL] [Abstract][Full Text] [Related]
16. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. Shekhirev M; Zahl P; Sinitskii A ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655 [TBL] [Abstract][Full Text] [Related]
17. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization. Ozaki K; Kawasumi K; Shibata M; Ito H; Itami K Nat Commun; 2015 Feb; 6():6251. PubMed ID: 25683787 [TBL] [Abstract][Full Text] [Related]
18. Emerging Bottom-Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Jolly A; Miao D; Daigle M; Morin JF Angew Chem Int Ed Engl; 2020 Mar; 59(12):4624-4633. PubMed ID: 31265750 [TBL] [Abstract][Full Text] [Related]
19. Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. Müllen K ACS Nano; 2014 Jul; 8(7):6531-41. PubMed ID: 25012545 [TBL] [Abstract][Full Text] [Related]
20. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Niu W; Ma J; Feng X Acc Chem Res; 2022 Dec; 55(23):3322-3333. PubMed ID: 36378659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]