These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26186833)

  • 1. Variation in performance at different positions of an ultrasonic VialTweeter--A study based on various physical and chemical activities.
    Tiong TJ; Low LE; Teoh HJ; Chin JK; Manickam S
    Ultrason Sonochem; 2015 Nov; 27():165-170. PubMed ID: 26186833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonochemical characterisation of ultrasonic dental descalers.
    Price GJ; Tiong TJ; King DC
    Ultrason Sonochem; 2014 Nov; 21(6):2052-60. PubMed ID: 24444490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of active sonochemical zones in a triple frequency ultrasonic reactor via physical and chemical characterization techniques.
    Tiong TJ; Liew DK; Gondipon RC; Wong RW; Loo YL; Lok MS; Manickam S
    Ultrason Sonochem; 2017 Mar; 35(Pt B):569-576. PubMed ID: 27156122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.
    Yusof NS; Babgi B; Alghamdi Y; Aksu M; Madhavan J; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():568-76. PubMed ID: 26142078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.
    Tiong TJ; Chandesa T; Yap YH
    Ultrason Sonochem; 2017 May; 36():78-87. PubMed ID: 28069242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a fast and efficient ultrasonic-based strategy for DNA fragmentation.
    Larguinho M; Santos HM; Doria G; Scholz H; Baptista PV; Capelo JL
    Talanta; 2010 May; 81(3):881-6. PubMed ID: 20298868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L.
    Mishra KP; Gogate PR
    J Environ Manage; 2011 Aug; 92(8):1972-7. PubMed ID: 21530069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing and characterizing a multi-stepped ultrasonic horn for enhanced sonochemical performance.
    Wei Z; Kosterman JA; Xiao R; Pee GY; Cai M; Weavers LK
    Ultrason Sonochem; 2015 Nov; 27():325-333. PubMed ID: 26186851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors.
    Asakura Y; Nishida T; Matsuoka T; Koda S
    Ultrason Sonochem; 2008 Mar; 15(3):244-50. PubMed ID: 17548225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemical reaction with microbubbles generated by hollow ultrasonic horn.
    Makuta T; Aizawa Y; Suzuki R
    Ultrason Sonochem; 2013 Jul; 20(4):997-1001. PubMed ID: 23332459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of externally applied pressure on the ultrasonic degradation of Rhodamine B.
    Geng M; Thagard SM
    Ultrason Sonochem; 2013 Jan; 20(1):618-25. PubMed ID: 22967950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of sonochemiluminescence reduction at high acoustic amplitudes by the addition of particles.
    Tuziuti T; Yasui K; Kozuka T; Towata A; Iida Y
    J Phys Chem A; 2007 Dec; 111(48):12093-8. PubMed ID: 17990864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.
    Kobayashi D; Honma C; Matsumoto H; Takahashi T; Kuroda C; Otake K; Shono A
    Ultrason Sonochem; 2014 Jul; 21(4):1489-95. PubMed ID: 24439912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of liquid velocity distribution in a sonochemical reactor.
    Xu Z; Yasuda K; Koda S
    Ultrason Sonochem; 2013 Jan; 20(1):452-9. PubMed ID: 22634380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of irradiation distance on degradation of phenol using indirect ultrasonic irradiation method.
    Kobayashi D; Sano K; Takeuchi Y; Terasaka K
    Ultrason Sonochem; 2011 Sep; 18(5):1205-10. PubMed ID: 21342780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes.
    Nikitenko SI; Le Naour C; Moisy P
    Ultrason Sonochem; 2007 Mar; 14(3):330-6. PubMed ID: 16996294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of ultrasonic degradation rates constants of methylene blue at 22.8 kHz, 127 kHz, and 490 kHz.
    Kobayashi D; Honma C; Suzuki A; Takahashi T; Matsumoto H; Kuroda C; Otake K; Shono A
    Ultrason Sonochem; 2012 Jul; 19(4):745-9. PubMed ID: 22285681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.