BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26186855)

  • 1. A comparative fluid flow characterisation in a low frequency/high power sonoreactor and mechanical stirred vessel.
    Sajjadi B; Raman AAA; Ibrahim S
    Ultrason Sonochem; 2015 Nov; 27():359-373. PubMed ID: 26186855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.
    Sajjadi B; Raman AA; Ibrahim S
    Ultrason Sonochem; 2015 May; 24():193-203. PubMed ID: 25435397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of mass transfer intensification under power ultrasound irradiation using 3D computational simulation: A comparative analysis.
    Sajjadi B; Asgharzadehahmadi S; Asaithambi P; Raman AA; Parthasarathy R
    Ultrason Sonochem; 2017 Jan; 34():504-518. PubMed ID: 27773275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of flow behaviour and velocity induced by ultrasound using particle image velocimetry (PIV): Effect of fluid rheology, acoustic intensity and transducer tip size.
    O'Sullivan JJ; Espinoza CJU; Mihailova O; Alberini F
    Ultrason Sonochem; 2018 Nov; 48():218-230. PubMed ID: 30080545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and computational determination of the hydrodynamics of mini vessel dissolution testing systems.
    Wang B; Armenante PM
    Int J Pharm; 2016 Aug; 510(1):336-49. PubMed ID: 27317988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at different impeller agitation speeds.
    Bai G; Wang Y; Armenante PM
    Int J Pharm; 2011 Jan; 403(1-2):1-14. PubMed ID: 20883758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.
    Li J; Deng B; Zhang B; Shen X; Kim CN
    Water Sci Technol; 2015; 72(8):1308-18. PubMed ID: 26465300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
    Cho E; Chung SK; Rhee K
    Ultrasonics; 2015 Sep; 62():66-74. PubMed ID: 26025507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments.
    Meng C; Huang J; Ye C; Cheng W; Chen J; Li Y
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1347-63. PubMed ID: 25680396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new model of cavern diameter based on a validated CFD study on stirring of a highly shear-thinning fluid.
    Story A; Jaworski Z
    Chem Zvesti; 2017; 71(7):1255-1269. PubMed ID: 28706344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers.
    van Hooff T; Blocken B; van Heijst GJ
    Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized acoustic streaming generated at oblique incident angles to improve ultrasound thrombolysis effect.
    Zhang Q; Yuan Z; Song R; Xue H; Tu J; Fan Z; Guo X; Zheng Y; Zhang D
    Med Phys; 2022 Sep; 49(9):5728-5741. PubMed ID: 35860901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the fluid dynamics of a laboratory scale single-use stirred bioreactor.
    Odeleye AO; Marsh DT; Osborne MD; Lye GJ; Micheletti M
    Chem Eng Sci; 2014 May; 111(100):299-312. PubMed ID: 24864128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.
    Su B; Chua LP; Wang X
    Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents.
    Bouillot P; Brina O; Ouared R; Yilmaz H; Lovblad KO; Farhat M; Mendes Pereira V
    J Neurointerv Surg; 2016 Mar; 8(3):309-15. PubMed ID: 25603807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities.
    McCarthy LG; Bradley G; Sexton JC; Corrigan OI; Healy AM
    AAPS PharmSciTech; 2004 Apr; 5(2):e31. PubMed ID: 15760089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic performance of a single-use aerated stirred bioreactor in animal cell culture: applications of tomography, dynamic gas disengagement (DGD), and CFD.
    Kazemzadeh A; Elias C; Tamer M; Ein-Mozaffari F
    Bioprocess Biosyst Eng; 2018 May; 41(5):679-695. PubMed ID: 29445862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.
    Story A; Jaworski Z; Simmons MJ; Nowak E
    Chem Zvesti; 2018; 72(3):593-602. PubMed ID: 29568152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.