BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26186865)

  • 1. Mapping of cavitational activity in a pilot plant dyeing equipment.
    Actis Grande G; Giansetti M; Pezzin A; Rovero G; Sicardi S
    Ultrason Sonochem; 2015 Nov; 27():440-448. PubMed ID: 26186865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature.
    Actis Grande G; Giansetti M; Pezzin A; Rovero G; Sicardi S
    Ultrason Sonochem; 2017 Mar; 35(Pt A):276-284. PubMed ID: 27771270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of 20 L capacity ultrasonic reactor using cavitation activity meter and dye degradation.
    Joshi S; Agarkoti C; Gogate PR
    Ultrason Sonochem; 2023 Dec; 101():106688. PubMed ID: 37952469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.
    Ding T; Hu H; Bai C; Guo S; Yang M; Wang S; Wan M
    Ultrasonics; 2016 Jul; 69():166-81. PubMed ID: 27111870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.
    Tissera ND; Wijesena RN; de Silva KM
    Ultrason Sonochem; 2016 Mar; 29():270-8. PubMed ID: 26585007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of conventional and ultrasonic method for dyeing of spunbond polyester nonwoven fabric.
    Altay P; Ӧzcan G; Tekçin M; Şahin G; Çelik S
    Ultrason Sonochem; 2018 Apr; 42():768-775. PubMed ID: 29429730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound for low temperature dyeing of wool with acid dye.
    Ferrero F; Periolatto M
    Ultrason Sonochem; 2012 May; 19(3):601-6. PubMed ID: 22055328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies.
    Melodelima D; Chapelon JY; Theillère Y; Cathignol D
    Ultrasound Med Biol; 2004 Jan; 30(1):103-11. PubMed ID: 14962614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification.
    Dong Z; Yao C; Zhang X; Xu J; Chen G; Zhao Y; Yuan Q
    Lab Chip; 2015 Feb; 15(4):1145-52. PubMed ID: 25537767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the cavitation development and acoustic spectrum in various liquids.
    Tzanakis I; Lebon GS; Eskin DG; Pericleous KA
    Ultrason Sonochem; 2017 Jan; 34():651-662. PubMed ID: 27773292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.
    Gonçalves I; Herrero-Yniesta V; Perales Arce I; Escrigas Castañeda M; Cavaco-Paulo A; Silva C
    Ultrason Sonochem; 2014 Jul; 21(4):1535-43. PubMed ID: 24618529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening.
    Bai F; Long Y; Saalbach KA; Twiefel J
    Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble.
    Tzanakis I; Eskin DG; Georgoulas A; Fytanidis DK
    Ultrason Sonochem; 2014 Mar; 21(2):866-78. PubMed ID: 24176799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Summation of high-frequency Langevin transducers vibrations for increasing of ultrasonic radiator power.
    Khmelev VN; Shalunov AV; Nesterov VA
    Ultrasonics; 2021 Jul; 114():106413. PubMed ID: 33677165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.
    Kamel MM; Helmy HM; Mashaly HM; Kafafy HH
    Ultrason Sonochem; 2010 Jan; 17(1):92-7. PubMed ID: 19574082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing cavitational effects for green process intensification.
    Wu Z; Tagliapietra S; Giraudo A; Martina K; Cravotto G
    Ultrason Sonochem; 2019 Apr; 52():530-546. PubMed ID: 30600212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation field analysis for an increased efficiency of ultrasonic sludge pre-treatment using a novel hydrophone system.
    Bandelin J; Lippert T; Drewes JE; Koch K
    Ultrason Sonochem; 2018 Apr; 42():672-678. PubMed ID: 29429716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.
    Larik SA; Khatri A; Ali S; Kim SH
    Ultrason Sonochem; 2015 May; 24():178-83. PubMed ID: 25575805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.