These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
797 related articles for article (PubMed ID: 26187250)
41. PDF text classification to leverage information extraction from publication reports. Bui DD; Del Fiol G; Jonnalagadda S J Biomed Inform; 2016 Jun; 61():141-8. PubMed ID: 27044929 [TBL] [Abstract][Full Text] [Related]
42. Normalizing clinical terms using learned edit distance patterns. Kate RJ J Am Med Inform Assoc; 2016 Mar; 23(2):380-6. PubMed ID: 26232443 [TBL] [Abstract][Full Text] [Related]
43. Ambiguity in medical concept normalization: An analysis of types and coverage in electronic health record datasets. Newman-Griffis D; Divita G; Desmet B; Zirikly A; Rosé CP; Fosler-Lussier E J Am Med Inform Assoc; 2021 Mar; 28(3):516-532. PubMed ID: 33319905 [TBL] [Abstract][Full Text] [Related]
44. Cimind: A phonetic-based tool for multilingual named entity recognition in biomedical texts. Cabot C; Darmoni S; Soualmia LF J Biomed Inform; 2019 Jun; 94():103176. PubMed ID: 30980962 [TBL] [Abstract][Full Text] [Related]
45. Clinical Information Extraction at the CLEF eHealth Evaluation lab 2016. Névéol A; Cohen KB; Grouin C; Hamon T; Lavergne T; Kelly L; Goeuriot L; Rey G; Robert A; Tannier X; Zweigenbaum P CEUR Workshop Proc; 2016 Sep; 1609():28-42. PubMed ID: 29308065 [TBL] [Abstract][Full Text] [Related]
46. Transformers for extracting breast cancer information from Spanish clinical narratives. Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566 [TBL] [Abstract][Full Text] [Related]
47. Automatic prediction of coronary artery disease from clinical narratives. Buchan K; Filannino M; Uzuner Ö J Biomed Inform; 2017 Aug; 72():23-32. PubMed ID: 28663072 [TBL] [Abstract][Full Text] [Related]
48. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. Tang B; Cao H; Wu Y; Jiang M; Xu H BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040 [TBL] [Abstract][Full Text] [Related]
49. Extraction of semantic biomedical relations from text using conditional random fields. Bundschus M; Dejori M; Stetter M; Tresp V; Kriegel HP BMC Bioinformatics; 2008 Apr; 9():207. PubMed ID: 18433469 [TBL] [Abstract][Full Text] [Related]
50. tmBioC: improving interoperability of text-mining tools with BioC. Khare R; Wei CH; Mao Y; Leaman R; Lu Z Database (Oxford); 2014; 2014():. PubMed ID: 25062914 [TBL] [Abstract][Full Text] [Related]
51. Drug knowledge discovery via multi-task learning and pre-trained models. Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238 [TBL] [Abstract][Full Text] [Related]
52. Korean clinical entity recognition from diagnosis text using BERT. Kim YM; Lee TH BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724 [TBL] [Abstract][Full Text] [Related]
54. Detection and categorization of bacteria habitats using shallow linguistic analysis. Karadeniz İ; Özgür A BMC Bioinformatics; 2015; 16 Suppl 10(Suppl 10):S5. PubMed ID: 26201262 [TBL] [Abstract][Full Text] [Related]
55. Biomedical named entity recognition using deep neural networks with contextual information. Cho H; Lee H BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938 [TBL] [Abstract][Full Text] [Related]
56. Tool-supported Interactive Correction and Semantic Annotation of Narrative Clinical Reports. Zvára K; Tomečková M; Peleška J; Svátek V; Zvárová J Methods Inf Med; 2017 May; 56(3):217-229. PubMed ID: 28451691 [TBL] [Abstract][Full Text] [Related]
57. Extracting adverse drug events from clinical Notes: A systematic review of approaches used. Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081 [TBL] [Abstract][Full Text] [Related]
58. Vocabulary Matters: An Annotation Pipeline and Four Deep Learning Algorithms for Enzyme Named Entity Recognition. Wang M; Vijayaraghavan A; Beck T; Posma JM J Proteome Res; 2024 Jun; 23(6):1915-1925. PubMed ID: 38733346 [TBL] [Abstract][Full Text] [Related]
59. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
60. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods. Zhang Y; Wang X; Hou Z; Li J JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]