BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 26187436)

  • 1. Ecological and Lineage-Specific Factors Drive the Molecular Evolution of Rhodopsin in Cichlid Fishes.
    Torres-Dowdall J; Henning F; Elmer KR; Meyer A
    Mol Biol Evol; 2015 Nov; 32(11):2876-82. PubMed ID: 26187436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.
    Schott RK; Refvik SP; Hauser FE; López-Fernández H; Chang BS
    Mol Biol Evol; 2014 May; 31(5):1149-65. PubMed ID: 24509690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America.
    Hauser FE; Ilves KL; Schott RK; Castiglione GM; López-Fernández H; Chang BSW
    Mol Biol Evol; 2017 Oct; 34(10):2650-2664. PubMed ID: 28957507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual pigment molecular evolution in the Trinidadian pike cichlid (Crenicichla frenata): a less colorful world for neotropical cichlids?
    Weadick CJ; Loew ER; Rodd FH; Chang BS
    Mol Biol Evol; 2012 Oct; 29(10):3045-60. PubMed ID: 22809797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes.
    Torres-Dowdall J; Pierotti MER; Härer A; Karagic N; Woltering JM; Henning F; Elmer KR; Meyer A
    Mol Biol Evol; 2017 Oct; 34(10):2469-2485. PubMed ID: 28444297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive Darwinian selection drives the evolution of the morphology-related gene, EPCAM, in particularly species-rich lineages of African cichlid fishes.
    Fan S; Elmer KR; Meyer A
    J Mol Evol; 2011 Aug; 73(1-2):1-9. PubMed ID: 21811860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas.
    Salzburger W; Meyer A; Baric S; Verheyen E; Sturmbauer C
    Syst Biol; 2002 Feb; 51(1):113-35. PubMed ID: 11943095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays.
    Spady TC; Parry JW; Robinson PR; Hunt DM; Bowmaker JK; Carleton KL
    Mol Biol Evol; 2006 Aug; 23(8):1538-47. PubMed ID: 16720697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of genes for pigmentation in African cichlid fishes.
    Sugie A; Terai Y; Ota R; Okada N
    Gene; 2004 Dec; 343(2):337-46. PubMed ID: 15588588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High prevalence of non-synonymous substitutions in mtDNA of cichlid fishes from Lake Victoria.
    Shirai K; Inomata N; Mizoiri S; Aibara M; Terai Y; Okada N; Tachida H
    Gene; 2014 Dec; 552(2):239-45. PubMed ID: 25241383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel evolution of opsin gene expression in African cichlid fishes.
    O'Quin KE; Hofmann CM; Hofmann HA; Carleton KL
    Mol Biol Evol; 2010 Dec; 27(12):2839-54. PubMed ID: 20601410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-wavelength sensitive opsin (LWS) gene variability in Neotropical cichlids (Teleostei: Cichlidae).
    Fabrin TMC; Prioli SMAP; Prioli AJ
    An Acad Bras Cienc; 2017; 89(1):213-222. PubMed ID: 28423081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae).
    López-Fernández H; Winemiller KO; Honeycutt RL
    Mol Phylogenet Evol; 2010 Jun; 55(3):1070-86. PubMed ID: 20178851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics.
    Salzburger W; Meyer A
    Naturwissenschaften; 2004 Jun; 91(6):277-90. PubMed ID: 15241604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age of cichlids: new dates for ancient lake fish radiations.
    Genner MJ; Seehausen O; Lunt DH; Joyce DA; Shaw PW; Carvalho GR; Turner GF
    Mol Biol Evol; 2007 May; 24(5):1269-82. PubMed ID: 17369195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of regulatory networks associated with traits under selection in cichlids.
    Mehta TK; Koch C; Nash W; Knaack SA; Sudhakar P; Olbei M; Bastkowski S; Penso-Dolfin L; Korcsmaros T; Haerty W; Roy S; Di-Palma F
    Genome Biol; 2021 Jan; 22(1):25. PubMed ID: 33419455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika.
    Ricci V; Ronco F; Musilova Z; Salzburger W
    Mol Ecol; 2022 May; 31(10):2882-2897. PubMed ID: 35302684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes cichlid fishes.
    Sugawara T; Terai Y; Okada N
    Mol Biol Evol; 2002 Oct; 19(10):1807-11. PubMed ID: 12270908
    [No Abstract]   [Full Text] [Related]  

  • 19. Evolution, inactivation and loss of short wavelength-sensitive opsin genes during the diversification of Neotropical cichlids.
    Hauser FE; Ilves KL; Schott RK; Alvi E; López-Fernández H; Chang BSW
    Mol Ecol; 2021 Apr; 30(7):1688-1703. PubMed ID: 33569886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What, if anything, is a Tilapia?-mitochondrial ND2 phylogeny of tilapiines and the evolution of parental care systems in the African cichlid fishes.
    Klett V; Meyer A
    Mol Biol Evol; 2002 Jun; 19(6):865-83. PubMed ID: 12032243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.