BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26188105)

  • 21. Loss of inner hair cell ribbon synapses and auditory nerve fiber regression in Cldn14 knockout mice.
    Claußen M; Schulze J; Nothwang HG
    Hear Res; 2020 Jun; 391():107950. PubMed ID: 32251970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea.
    Jeng JY; Ceriani F; Olt J; Brown SDM; Holley MC; Bowl MR; Johnson SL; Marcotti W
    J Physiol; 2020 Oct; 598(19):4339-4355. PubMed ID: 32710572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired auditory processing and altered structure of the endbulb of Held synapse in mice lacking the GluA3 subunit of AMPA receptors.
    García-Hernández S; Abe M; Sakimura K; Rubio ME
    Hear Res; 2017 Feb; 344():284-294. PubMed ID: 28011083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biased auditory nerve central synaptopathy is associated with age-related hearing loss.
    Wang M; Zhang C; Lin S; Wang Y; Seicol BJ; Ariss RW; Xie R
    J Physiol; 2021 Mar; 599(6):1833-1854. PubMed ID: 33450070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transmission of auditory sensory information decreases in rate and temporal precision at the endbulb of Held synapse during age-related hearing loss.
    Xie R
    J Neurophysiol; 2016 Dec; 116(6):2695-2705. PubMed ID: 27683884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SMAD4 Defect Causes Auditory Neuropathy Via Specialized Disruption of Cochlear Ribbon Synapses in Mice.
    Liu K; Ji F; Yang G; Hou Z; Sun J; Wang X; Guo W; Sun W; Yang W; Yang X; Yang S
    Mol Neurobiol; 2016 Oct; 53(8):5679-91. PubMed ID: 26491026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a robust central auditory synapse in congenital deafness.
    Youssoufian M; Oleskevich S; Walmsley B
    J Neurophysiol; 2005 Nov; 94(5):3168-80. PubMed ID: 16000524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of hair cell synapse defects in sensorineural hearing impairment.
    Moser T; Predoehl F; Starr A
    Otol Neurotol; 2013 Aug; 34(6):995-1004. PubMed ID: 23628789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loudness adaptation accompanying ribbon synapse and auditory nerve disorders.
    Wynne DP; Zeng FG; Bhatt S; Michalewski HJ; Dimitrijevic A; Starr A
    Brain; 2013 May; 136(Pt 5):1626-38. PubMed ID: 23503620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse.
    Roux I; Safieddine S; Nouvian R; Grati M; Simmler MC; Bahloul A; Perfettini I; Le Gall M; Rostaing P; Hamard G; Triller A; Avan P; Moser T; Petit C
    Cell; 2006 Oct; 127(2):277-89. PubMed ID: 17055430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP.
    Jovanovic S; Radulovic T; Coddou C; Dietz B; Nerlich J; Stojilkovic SS; Rübsamen R; Milenkovic I
    J Physiol; 2017 Feb; 595(4):1315-1337. PubMed ID: 28030754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of spontaneous activity in development of the endbulb of Held synapse.
    McKay SM; Oleskevich S
    Hear Res; 2007 Aug; 230(1-2):53-63. PubMed ID: 17590547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic studies inform the functional diversity of cochlear afferents.
    Fuchs PA; Glowatzki E
    Hear Res; 2015 Dec; 330(Pt A):18-25. PubMed ID: 26403507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse.
    Sobkowicz HM; Slapnick SM; August BK
    Synapse; 2003 Oct; 50(1):53-66. PubMed ID: 12872294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing.
    Michanski S; Kapoor R; Steyer AM; Möbius W; Früholz I; Ackermann F; Gültas M; Garner CC; Hamra FK; Neef J; Strenzke N; Moser T; Wichmann C
    EMBO Rep; 2023 Sep; 24(9):e56702. PubMed ID: 37477166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of Shank1 has minimal effects on the molecular composition and function of glutamatergic afferent postsynapses in the mouse inner ear.
    Braude JP; Vijayakumar S; Baumgarner K; Laurine R; Jones TA; Jones SM; Pyott SJ
    Hear Res; 2015 Mar; 321():52-64. PubMed ID: 25637745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hidden hearing loss is associated with loss of ribbon synapses of cochlea inner hair cells.
    Song F; Gan B; Wang N; Wang Z; Xu AT
    Biosci Rep; 2021 Apr; 41(4):. PubMed ID: 33734328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.
    Barclay M; Constable R; James NR; Thorne PR; Montgomery JM
    Neuroscience; 2016 Jun; 325():50-62. PubMed ID: 27012610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.