BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26188149)

  • 21. Ascorbic acid depletion enhances expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice.
    Amano A; Aigaki T; Maruyama N; Ishigami A
    Arch Biochem Biophys; 2010 Apr; 496(1):38-44. PubMed ID: 20122894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and physiological role of vitamin C transporters.
    Bürzle M; Hediger MA
    Curr Top Membr; 2012; 70():357-75. PubMed ID: 23177992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide-dependent uptake of vitamin C in human glioma cells.
    Rodríguez FS; Salazar KA; Jara NA; García-Robles MA; Pérez F; Ferrada LE; Martínez F; Nualart FJ
    J Neurochem; 2013 Dec; 127(6):793-804. PubMed ID: 23859461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Cellular and intracellular transport of vitamin C. The physiologic aspects].
    Szarka A; Lőrincz T
    Orv Hetil; 2013 Oct; 154(42):1651-6. PubMed ID: 24121217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resveratrol potentiates intracellular ascorbic acid enrichment through dehydroascorbic acid transport and/or its intracellular reduction in HaCaT cells.
    Saitoh Y; Umezaki T; Yonekura N; Nakawa A
    Mol Cell Biochem; 2020 Apr; 467(1-2):57-64. PubMed ID: 32080778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and Jurkat cells.
    Park JB; Levine M
    J Nutr; 2000 May; 130(5):1297-302. PubMed ID: 10801933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes.
    Michels AJ; Joisher N; Hagen TM
    Arch Biochem Biophys; 2003 Feb; 410(1):112-20. PubMed ID: 12559983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colony-stimulating factors signal for increased transport of vitamin C in human host defense cells.
    Vera JC; Rivas CI; Zhang RH; Golde DW
    Blood; 1998 Apr; 91(7):2536-46. PubMed ID: 9516155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW
    Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two distinct uptake mechanisms for ascorbate and dehydroascorbate in human lymphoblasts and their interaction with glucose.
    Ngkeekwong FC; Ng LL
    Biochem J; 1997 May; 324 ( Pt 1)(Pt 1):225-30. PubMed ID: 9164860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and/or activity of the SVCT2 ascorbate transporter may be decreased in many aggressive cancers, suggesting potential utility for sodium bicarbonate and dehydroascorbic acid in cancer therapy.
    McCarty MF
    Med Hypotheses; 2013 Oct; 81(4):664-70. PubMed ID: 23916956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport.
    Lutsenko EA; Carcamo JM; Golde DW
    Mol Cell Biol; 2004 Apr; 24(8):3150-6. PubMed ID: 15060139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP.
    Siushansian R; Tao L; Dixon SJ; Wilson JX
    J Neurochem; 1997 Jun; 68(6):2378-85. PubMed ID: 9166731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vitamin C transport systems of mammalian cells.
    Liang WJ; Johnson D; Jarvis SM
    Mol Membr Biol; 2001; 18(1):87-95. PubMed ID: 11396616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of dehydroascorbic acid by homocysteine.
    Park JB
    Biochim Biophys Acta; 2001 Feb; 1525(1-2):173-9. PubMed ID: 11342267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes.
    García-Krauss A; Ferrada L; Astuya A; Salazar K; Cisternas P; Martínez F; Ramírez E; Nualart F
    Mol Neurobiol; 2016 Nov; 53(9):5847-5863. PubMed ID: 26497038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.
    KC S; Cárcamo JM; Golde DW
    FASEB J; 2005 Oct; 19(12):1657-67. PubMed ID: 16195374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain.
    Li X; Cobb CE; May JM
    Arch Biochem Biophys; 2002 Jul; 403(1):103-10. PubMed ID: 12061807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enterotoxigenic Escherichia coli heat labile enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway.
    Subramenium GA; Sabui S; Marchant JS; Said HM; Subramanian VS
    Am J Physiol Gastrointest Liver Physiol; 2019 Jan; 316(1):G55-G63. PubMed ID: 30285481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.