These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26188161)

  • 1. Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.
    Li H; Bai B; Zhang Q; Bao Y; Guo J; Chen S; Miao C; Liu X; Zhang T
    Gene; 2015 Dec; 573(2):254-60. PubMed ID: 26188161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal epigenetic regulation of the gene expression levels of Wnt2b and Wnt7b: Implications for neural tube defects.
    Bai B; Chen S; Zhang Q; Jiang Q; Li H
    Mol Med Rep; 2016 Jan; 13(1):99-106. PubMed ID: 26548512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects.
    Zhang Q; Xue P; Li H; Bao Y; Wu L; Chang S; Niu B; Yang F; Zhang T
    Neurobiol Dis; 2013 Jun; 54():404-13. PubMed ID: 23376398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects.
    Yu J; Wang L; Pei P; Li X; Wu J; Qiu Z; Zhang J; Ao R; Wang S; Zhang T; Xie J
    Epigenetics Chromatin; 2019 Dec; 12(1):76. PubMed ID: 31856916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different epigenetic alterations are associated with abnormal IGF2/Igf2 upregulation in neural tube defects.
    Bai B; Zhang Q; Liu X; Miao C; Shangguan S; Bao Y; Guo J; Wang L; Zhang T; Li H
    PLoS One; 2014; 9(11):e113308. PubMed ID: 25423083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the expression of tumor necrosis factor‑related genes by abnormal histone H3K27 acetylation: Implications for neural tube defects.
    Wan C; Liu X; Bai B; Cao H; Li H; Zhang Q
    Mol Med Rep; 2018 Jun; 17(6):8031-8038. PubMed ID: 29693124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation.
    Li BI; Matteson PG; Ababon MF; Nato AQ; Lin Y; Nanda V; Matise TC; Millonig JH
    Dev Biol; 2015 Jun; 402(1):17-31. PubMed ID: 25753732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.
    Harris MJ; Juriloff DM
    Teratology; 1999 Nov; 60(5):292-305. PubMed ID: 10525207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of histone acetylation markers in human fetal brains and increased H4K5ac expression in neural tube defects.
    Li D; Wan C; Bai B; Cao H; Liu C; Zhang Q
    Mol Genet Genomic Med; 2019 Dec; 7(12):e1002. PubMed ID: 31612645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice.
    Billington CJ; Schmidt B; Marcucio RS; Hallgrimsson B; Gopalakrishnan R; Petryk A
    Dis Model Mech; 2015 Feb; 8(2):139-46. PubMed ID: 25468951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of retinoic acid on the expressions of Vangl1 and vangl2 in mouse fetuses.
    Liu J; Qi J; Zhu J; Zhang L; Liang Y; Ning Q; Luo X
    J Neurogenet; 2008; 22(3):167-79. PubMed ID: 19012162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic contribution of retinoid-related genes to neural tube defects.
    Li H; Zhang J; Chen S; Wang F; Zhang T; Niswander L
    Hum Mutat; 2018 Apr; 39(4):550-562. PubMed ID: 29297599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphisms of Placental Iodothyronine Deiodinase Genes in a Rural Area of Northern China with High Prevalence of Neural Tube Defects.
    Wang F; Gu YH; Guo J; Bao Y; Qiu Z; Zheng P; Ushijima M; Matsuura M; Zhang T
    Hum Hered; 2023; 88(1):29-37. PubMed ID: 36944328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. F-box protein FBXO30 mediates retinoic acid receptor γ ubiquitination and regulates BMP signaling in neural tube defects.
    Cheng X; Pei P; Yu J; Zhang Q; Li D; Xie X; Wu J; Wang S; Zhang T
    Cell Death Dis; 2019 Jul; 10(8):551. PubMed ID: 31320612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What are the molecular mechanisms of neural tube defects?
    Corcoran J
    Bioessays; 1998 Jan; 20(1):6-8. PubMed ID: 9504042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypermethylation of AKT2 gene is associated with neural-tube defects in fetus.
    Ma FF; Cao DD; Ouyang S; Tang R; Liu Z; Li Y; Wu J
    Placenta; 2016 Dec; 48():80-86. PubMed ID: 27871477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale reprogramming of cranial neural crest gene expression by retinoic acid exposure.
    Williams SS; Mear JP; Liang HC; Potter SS; Aronow BJ; Colbert MC
    Physiol Genomics; 2004 Oct; 19(2):184-97. PubMed ID: 15466718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of histone malonylation in the human fetal brain and implications for diabetes-induced neural tube defects.
    Zhang Q; Cai T; Xiao Z; Li D; Wan C; Cui X; Bai B
    Mol Genet Genomic Med; 2020 Sep; 8(9):e1403. PubMed ID: 32666640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinoid signaling and the generation of regional and cellular diversity in the embryonic mouse spinal cord.
    Colbert MC; Rubin WW; Linney E; LaMantia AS
    Dev Dyn; 1995 Sep; 204(1):1-12. PubMed ID: 8563020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of retinoic acid signaling impairs cranial and spinal neural tube closure in mice lacking the Grainyhead-like 3 transcription factor.
    Deng Z; Carpinelli MR; Butt T; Magor GW; Perkins AC; Jane SM
    Biochem Biophys Res Commun; 2022 Dec; 635():244-251. PubMed ID: 36283337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.