These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 26188262)

  • 1. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparing for (valenced) action: The role of differential effort in the orthogonalized go/no-go task.
    Schevernels H; Bombeke K; Krebs RM; Boehler CN
    Psychophysiology; 2016 Feb; 53(2):186-97. PubMed ID: 26481327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemispheric asymmetries in the transition from action preparation to execution.
    Sulpizio V; Lucci G; Berchicci M; Galati G; Pitzalis S; Di Russo F
    Neuroimage; 2017 Mar; 148():390-402. PubMed ID: 28069542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak proactive cognitive/motor brain control accounts for poor children's behavioral performance in speeded discrimination tasks.
    Quinzi F; Perri RL; Berchicci M; Bianco V; Pitzalis S; Zeri F; Di Russo F
    Biol Psychol; 2018 Oct; 138():211-222. PubMed ID: 30130614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motivational context for response inhibition influences proactive involvement of attention.
    Langford ZD; Schevernels H; Boehler CN
    Sci Rep; 2016 Oct; 6():35122. PubMed ID: 27731348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process.
    Roberts DM; Fedota JR; Buzzell GA; Parasuraman R; McDonald CG
    J Cogn Neurosci; 2014 Aug; 26(8):1615-28. PubMed ID: 24405187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disentangling deficits in adults with attention-deficit/hyperactivity disorder.
    Bekker EM; Overtoom CC; Kooij JJ; Buitelaar JK; Verbaten MN; Kenemans JL
    Arch Gen Psychiatry; 2005 Oct; 62(10):1129-36. PubMed ID: 16203958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control.
    Raud L; Huster RJ
    Brain Topogr; 2017 Jul; 30(4):486-501. PubMed ID: 28456867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute psychological stress promotes general alertness and attentional control processes: An ERP study.
    Qi M; Gao H
    Psychophysiology; 2020 Apr; 57(4):e13521. PubMed ID: 31898811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task preparation processes related to reward prediction precede those related to task-difficulty expectation.
    Schevernels H; Krebs RM; Santens P; Woldorff MG; Boehler CN
    Neuroimage; 2014 Jan; 84():639-47. PubMed ID: 24064071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG signatures associated with stopping are sensitive to preparation.
    Greenhouse I; Wessel JR
    Psychophysiology; 2013 Sep; 50(9):900-8. PubMed ID: 23763667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategic down-regulation of attentional resources as a mechanism of proactive response inhibition.
    Langford ZD; Krebs RM; Talsma D; Woldorff MG; Boehler CN
    Eur J Neurosci; 2016 Aug; 44(4):2095-103. PubMed ID: 27306544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of trait impulsivity in response inhibition: event-related potentials in a stop-signal task.
    Shen IH; Lee DS; Chen CL
    Int J Psychophysiol; 2014 Feb; 91(2):80-7. PubMed ID: 24316151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconsidering electrophysiological markers of response inhibition in light of trigger failures in the stop-signal task.
    Skippen P; Fulham WR; Michie PT; Matzke D; Heathcote A; Karayanidis F
    Psychophysiology; 2020 Oct; 57(10):e13619. PubMed ID: 32725926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study.
    Malcolm BR; Foxe JJ; Butler JS; De Sanctis P
    Neuroimage; 2015 Aug; 117():230-42. PubMed ID: 25988225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.