These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26188374)

  • 1. Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies.
    Korzeniewski B
    Biochim Biophys Acta; 2015 Oct; 1847(10):1310-9. PubMed ID: 26188374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies.
    Korzeniewski B
    J Appl Physiol (1985); 2021 Aug; 131(2):768-777. PubMed ID: 34197225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.
    Korzeniewski B
    J Appl Physiol (1985); 2016 Aug; 121(2):424-37. PubMed ID: 27283913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling.
    Korzeniewski B
    Prog Biophys Mol Biol; 2017 May; 125():1-23. PubMed ID: 27939921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying extremely fast muscle V˙O
    Korzeniewski B; Rossiter HB; Zoladz JA
    Physiol Rep; 2018 Aug; 6(16):e13808. PubMed ID: 30156055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest.
    Korzeniewski B
    PLoS One; 2017; 12(10):e0185991. PubMed ID: 29045413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle.
    Korzeniewski B
    PLoS One; 2015; 10(2):e0117145. PubMed ID: 25647747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of training on skeletal muscle bioenergetic system in patients with mitochondrial myopathies: A computational study.
    Korzeniewski B
    Respir Physiol Neurobiol; 2022 Feb; 296():103799. PubMed ID: 34624544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies.
    Zheng XX; Shoffner JM; Voljavec AS; Wallace DC
    Biochim Biophys Acta; 1990 Aug; 1019(1):1-10. PubMed ID: 2168748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of enzyme deficiencies on oxidative phosphorylation: from isolated mitochondria to intact tissues. Theoretical studies.
    Korzeniewski B
    Mol Biol Rep; 2002; 29(1-2):197-202. PubMed ID: 12241057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training-Induced Increase in V·O
    Korzeniewski B
    Metabolites; 2023 Oct; 13(11):. PubMed ID: 37999207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.
    Korzeniewski B
    J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of oxidative phosphorylation is different in electrically- and cortically-stimulated skeletal muscle.
    Korzeniewski B
    PLoS One; 2018; 13(4):e0195620. PubMed ID: 29698403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical analysis of the oxidative phosphorylation complexes in skeletal muscle from patients with mitochondrial DNA encoded tRNA gene defects.
    De Paepe B; Smet J; Lammens M; Seneca S; Martin JJ; De Bleecker J; De Meirleir L; Lissens W; Van Coster R
    J Clin Pathol; 2009 Feb; 62(2):172-6. PubMed ID: 19181635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis.
    García-Ruiz I; Solís-Muñoz P; Fernández-Moreira D; Muñoz-Yagüe T; Solís-Herruzo JA
    Dis Model Mech; 2015 Feb; 8(2):183-91. PubMed ID: 25540128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of slowed V̇O
    Korzeniewski B
    Respir Physiol Neurobiol; 2023 Aug; 314():104084. PubMed ID: 37230211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance.
    Larsen S; Stride N; Hey-Mogensen M; Hansen CN; Bang LE; Bundgaard H; Nielsen LB; Helge JW; Dela F
    J Am Coll Cardiol; 2013 Jan; 61(1):44-53. PubMed ID: 23287371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.