These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26188386)

  • 41. Application of the RNA structure classification system, CSNA, to NMR structure determination.
    Baba S; Takasu A; Watanabe K; Kawai G
    Nucleic Acids Res Suppl; 2003; (3):127-8. PubMed ID: 14510413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA ligands that distinguish metabolite-induced conformations in the TPP riboswitch.
    Mayer G; Raddatz MS; Grunwald JD; Famulok M
    Angew Chem Int Ed Engl; 2007; 46(4):557-60. PubMed ID: 17146816
    [No Abstract]   [Full Text] [Related]  

  • 43. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Constitutive regulatory activity of an evolutionarily excluded riboswitch variant.
    Tremblay R; Lemay JF; Blouin S; Mulhbacher J; Bonneau É; Legault P; Dupont P; Penedo JC; Lafontaine DA
    J Biol Chem; 2011 Aug; 286(31):27406-15. PubMed ID: 21676871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface.
    Ohuchi SP; Ohtsu T; Nakamura Y
    Biochimie; 2006 Jul; 88(7):897-904. PubMed ID: 16540230
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of RNA aptamers against SRP19 protein having sequences different from SRP RNA.
    Haraguchi Y; Kuwasako K; Muto Y; Bessho Y; Nishimoto M; Yokoyama S; Kanai A; Kawai G; Sakamoto T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):265-6. PubMed ID: 19749362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy.
    Puffer B; Kreutz C; Rieder U; Ebert MO; Konrat R; Micura R
    Nucleic Acids Res; 2009 Dec; 37(22):7728-40. PubMed ID: 19843610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Life times of metastable states guide regulatory signaling in transcriptional riboswitches.
    Helmling C; Klötzner DP; Sochor F; Mooney RA; Wacker A; Landick R; Fürtig B; Heckel A; Schwalbe H
    Nat Commun; 2018 Mar; 9(1):944. PubMed ID: 29507289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A switch in time: detailing the life of a riboswitch.
    Garst AD; Batey RT
    Biochim Biophys Acta; 2009; 1789(9-10):584-91. PubMed ID: 19595806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating the malleability of RNA aptamers.
    Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M
    Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of microchip electrophoresis in the analysis of RNA aptamer-protein interactions.
    Nishikawa F; Arakawa H; Nishikawa S
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(4-6):369-82. PubMed ID: 16838832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers.
    Rieder U; Lang K; Kreutz C; Polacek N; Micura R
    Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands.
    Tahiri-Alaoui A; Frigotto L; Manville N; Ibrahim J; Romby P; James W
    Nucleic Acids Res; 2002 May; 30(10):e45. PubMed ID: 12000850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target.
    Allain FH; Gilbert DE; Bouvet P; Feigon J
    J Mol Biol; 2000 Oct; 303(2):227-41. PubMed ID: 11023788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control.
    Blouin S; Lafontaine DA
    RNA; 2007 Aug; 13(8):1256-67. PubMed ID: 17585050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retention of function in the DNA homolog of the RNA dopamine aptamer.
    Walsh R; DeRosa MC
    Biochem Biophys Res Commun; 2009 Oct; 388(4):732-5. PubMed ID: 19699181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous folding of alternative RNA structures with mutual constraints: an application to next-generation sequencing-based RNA structure probing.
    Zhong C; Zhang S
    J Comput Biol; 2014 Aug; 21(8):609-21. PubMed ID: 24689688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2'-SCF3 uridine-a powerful label for probing structure and function of RNA by 19F NMR spectroscopy.
    Fauster K; Kreutz C; Micura R
    Angew Chem Int Ed Engl; 2012 Dec; 51(52):13080-4. PubMed ID: 23161779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.