BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26188395)

  • 1. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana.
    Nakano M; Yoshioka H; Ohnishi K; Hikichi Y; Kiba A
    J Plant Physiol; 2015 Jul; 184():15-9. PubMed ID: 26188395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana.
    Nakano M; Nishihara M; Yoshioka H; Takahashi H; Sawasaki T; Ohnishi K; Hikichi Y; Kiba A
    PLoS One; 2013; 8(9):e75124. PubMed ID: 24073238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana.
    Gupta M; Yoshioka H; Ohnishi K; Mizumoto H; Hikichi Y; Kiba A
    Plant Cell Physiol; 2013 Aug; 54(8):1403-14. PubMed ID: 23788648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum.
    Maimbo M; Ohnishi K; Hikichi Y; Yoshioka H; Kiba A
    Plant Physiol; 2007 Dec; 145(4):1588-99. PubMed ID: 17965181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity.
    Kiba A; Nakano M; Vincent-Pope P; Takahashi H; Sawasaki T; Endo Y; Ohnishi K; Yoshioka H; Hikichi Y
    J Plant Physiol; 2012 Jul; 169(10):1017-22. PubMed ID: 22542247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana.
    Ito M; Ohnishi K; Hikichi Y; Kiba A
    Plant Signal Behav; 2015; 10(6):e970410. PubMed ID: 25482800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum.
    Maimbo M; Ohnishi K; Hikichi Y; Yoshioka H; Kiba A
    Plant Physiol; 2010 Apr; 152(4):2023-35. PubMed ID: 20118275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana.
    Takasato S; Bando T; Ohnishi K; Tsuzuki M; Hikichi Y; Kiba A
    J Exp Bot; 2023 Aug; 74(15):4721-4735. PubMed ID: 37191942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco.
    Poueymiro M; Cunnac S; Barberis P; Deslandes L; Peeters N; Cazale-Noel AC; Boucher C; Genin S
    Mol Plant Microbe Interact; 2009 May; 22(5):538-50. PubMed ID: 19348572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Identification of PTI Suppressors in Type III Effector Repertoire Reveals that
    Nakano M; Mukaihara T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795135
    [No Abstract]   [Full Text] [Related]  

  • 11. NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes.
    Liu Y; Liu Q; Tang Y; Ding W
    Biochem Biophys Res Commun; 2019 Jan; 508(3):940-945. PubMed ID: 30545635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco.
    Zhang C; Chen H; Zhuang RR; Chen YT; Deng Y; Cai TC; Wang SY; Liu QZ; Tang RH; Shan SH; Pan RL; Chen LS; Zhuang WJ
    J Exp Bot; 2019 Oct; 70(19):5407-5421. PubMed ID: 31173088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana.
    Kiba A; Nakano M; Hosokawa M; Galis I; Nakatani H; Shinya T; Ohnishi K; Hikichi Y
    J Exp Bot; 2020 Aug; 71(16):5027-5038. PubMed ID: 32412590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ralstonia solanacearum Type III Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants.
    Nakano M; Mukaihara T
    Plant Cell Physiol; 2018 Dec; 59(12):2576-2589. PubMed ID: 30165674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species.
    Nakano M; Mukaihara T
    Mol Plant Pathol; 2019 Sep; 20(9):1237-1251. PubMed ID: 31218811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene- and salicylic acid-mediated signaling pathways.
    Shibata Y; Kawakita K; Takemoto D
    Mol Plant Microbe Interact; 2010 Sep; 23(9):1130-42. PubMed ID: 20687803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper.
    Mou S; Liu Z; Gao F; Yang S; Su M; Shen L; Wu Y; He S
    Mol Plant Microbe Interact; 2017 Dec; 30(12):960-973. PubMed ID: 28840788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana.
    Kiba A; Galis I; Hojo Y; Ohnishi K; Yoshioka H; Hikichi Y
    PLoS One; 2014; 9(5):e98150. PubMed ID: 24845602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana.
    Zhuo T; Wang X; Chen Z; Cui H; Zeng Y; Chen Y; Fan X; Hu X; Zou H
    Mol Plant Pathol; 2020 Jul; 21(7):999-1004. PubMed ID: 32285606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases.
    Sun Y; Li P; Deng M; Shen D; Dai G; Yao N; Lu Y
    Cell Microbiol; 2017 Aug; 19(8):. PubMed ID: 28252830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.