These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26188853)

  • 1. Gelatin-based nanoparticles as DNA delivery systems: Synthesis, physicochemical and biocompatible characterization.
    Morán MC; Rosell N; Ruano G; Busquets MA; Vinardell MP
    Colloids Surf B Biointerfaces; 2015 Oct; 134():156-68. PubMed ID: 26188853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual responsive gelatin-based nanoparticles for enhanced 5-fluorouracil efficiency.
    Morán MC; Carazo J; Busquets MA
    Colloids Surf B Biointerfaces; 2018 Dec; 172():646-654. PubMed ID: 30243218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione.
    Kommareddy S; Amiji M
    Bioconjug Chem; 2005; 16(6):1423-32. PubMed ID: 16287238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery.
    Zou Z; He D; He X; Wang K; Yang X; Qing Z; Zhou Q
    Langmuir; 2013 Oct; 29(41):12804-10. PubMed ID: 24073830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of gelatin nanoparticles containing pDNA encoding IL-12 and their expression in CT-26 carcinoma cells.
    Hallaj-Nezhadi S; Valizadeh H; Baradaran B; Dobakhti F; Lotfipour F
    Future Oncol; 2013 Aug; 9(8):1195-206. PubMed ID: 23902249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancement of gelatin nanoparticles in drug and vaccine delivery.
    Sahoo N; Sahoo RK; Biswas N; Guha A; Kuotsu K
    Int J Biol Macromol; 2015 Nov; 81():317-31. PubMed ID: 26277745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery.
    Yuan H; Zhang W; Du YZ; Hu FQ
    Int J Pharm; 2010 Jun; 392(1-2):224-31. PubMed ID: 20230883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles.
    Kaul G; Amiji M
    J Pharm Sci; 2005 Jan; 94(1):184-98. PubMed ID: 15761942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research.
    Elzoghby AO
    J Control Release; 2013 Dec; 172(3):1075-91. PubMed ID: 24096021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pullulan-protamine as efficient haemocompatible gene delivery vector: synthesis and in vitro characterization.
    Priya SS; Rekha MR; Sharma CP
    Carbohydr Polym; 2014 Feb; 102():207-15. PubMed ID: 24507274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection.
    ur Rehman Z; Hoekstra D; Zuhorn IS
    J Control Release; 2011 Nov; 156(1):76-84. PubMed ID: 21787817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles.
    Dixit N; Vaibhav K; Pandey RS; Jain UK; Katare OP; Katyal A; Madan J
    Biomed Pharmacother; 2015 Feb; 69():1-10. PubMed ID: 25661330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery.
    Gan Q; Dai D; Yuan Y; Qian J; Sha S; Shi J; Liu C
    Biomed Microdevices; 2012 Apr; 14(2):259-70. PubMed ID: 22124885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles.
    Wernig K; Griesbacher M; Andreae F; Hajos F; Wagner J; Mosgoeller W; Zimmer A
    J Control Release; 2008 Sep; 130(2):192-8. PubMed ID: 18601963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of poly(D,L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells.
    Han R; Zhu J; Yang X; Xu H
    J Biomed Mater Res A; 2011 Jan; 96(1):142-9. PubMed ID: 21105162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New amphiphilic carriers forming pH-sensitive nanoparticles for nucleic acid delivery.
    Xu R; Wang XL; Lu ZR
    Langmuir; 2010 Sep; 26(17):13874-82. PubMed ID: 20672851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: synthesis, antitumor efficiency in vivo and penetration in tumors.
    Ding D; Zhu Z; Liu Q; Wang J; Hu Y; Jiang X; Liu B
    Eur J Pharm Biopharm; 2011 Sep; 79(1):142-9. PubMed ID: 21272637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin nanocarriers as potential vectors for effective management of tuberculosis.
    Saraogi GK; Gupta P; Gupta UD; Jain NK; Agrawal GP
    Int J Pharm; 2010 Jan; 385(1-2):143-9. PubMed ID: 19819315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.