BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26189093)

  • 1. Dynamic mechanical properties of murine brain tissue using micro-indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    J Biomech; 2015 Sep; 48(12):3213-8. PubMed ID: 26189093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus.
    MacManus DB; Murphy JG; Gilchrist MD
    J Mech Behav Biomed Mater; 2018 Nov; 87():256-266. PubMed ID: 30096513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jan; 48():309-318. PubMed ID: 27777117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jul; 57():384-394. PubMed ID: 28501711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-dependent regional mechanical properties of the rat hippocampus and cortex.
    Elkin BS; Ilankovan A; Morrison B
    J Biomech Eng; 2010 Jan; 132(1):011010. PubMed ID: 20524748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of brain tissue in simple shear at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2013 Dec; 28():71-85. PubMed ID: 23973615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device.
    Iivarinen JT; Korhonen RK; Julkunen P; Jurvelin JS
    Med Eng Phys; 2011 Dec; 33(10):1245-53. PubMed ID: 21696992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional mechanical and biochemical properties of the porcine cortical meninges.
    Walsh DR; Ross AM; Malijauskaite S; Flanagan BD; Newport DT; McGourty KD; Mulvihill JJE
    Acta Biomater; 2018 Oct; 80():237-246. PubMed ID: 30208332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of strain rate on indentation response of porcine brain.
    Qian L; Zhao H; Guo Y; Li Y; Zhou M; Yang L; Wang Z; Sun Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():210-217. PubMed ID: 29621688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.
    Hoffseth K; Randall C; Hansma P; Yang HT
    J Mech Behav Biomed Mater; 2015 Feb; 42():282-91. PubMed ID: 25528690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approach for contact medical device development via integrated testing, skeletal muscle modeling, and finite element analysis.
    Shanley C; Wang QJ; Livingston B
    J Mech Behav Biomed Mater; 2024 Jul; 155():106541. PubMed ID: 38678746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Sci Rep; 2016 Feb; 6():21569. PubMed ID: 26898475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material properties and constitutive modeling of infant porcine cerebellum tissue in tension at high strain rate.
    Li K; Zhao H; Liu W; Yin Z
    PLoS One; 2015; 10(4):e0123506. PubMed ID: 25830545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation.
    Elkin BS; Azeloglu EU; Costa KD; Morrison B
    J Neurotrauma; 2007 May; 24(5):812-22. PubMed ID: 17518536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pia-arachnoid complex on the indentation response of porcine brain at different length scales.
    Qian L; Wang S; Zhou S; Sun Y; Zhao H
    J Mech Behav Biomed Mater; 2022 Mar; 127():104925. PubMed ID: 35074733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-dependent mechanical properties of native and decellularized liver tissue.
    Evans DW; Moran EC; Baptista PM; Soker S; Sparks JL
    Biomech Model Mechanobiol; 2013 Jun; 12(3):569-80. PubMed ID: 22890366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.