BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26189212)

  • 1. Chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components.
    Yang TL; Hsiao YC
    Biomaterials; 2015 Oct; 66():29-40. PubMed ID: 26189212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling branching structure formation of the salivary gland by the degree of chitosan deacetylation.
    Hsiao YC; Chen CN; Chen YT; Yang TL
    Acta Biomater; 2013 Sep; 9(9):8214-23. PubMed ID: 23770221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data supporting chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components.
    Hsiao YC; Yang TL
    Data Brief; 2015 Sep; 4():551-8. PubMed ID: 26306324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The specificity of chitosan in promoting branching morphogenesis of progenitor salivary tissue.
    Yang TL; Young TH
    Biochem Biophys Res Commun; 2009 Apr; 381(4):466-70. PubMed ID: 18983827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland.
    Ikari T; Hiraki A; Seki K; Sugiura T; Matsumoto K; Shirasuna K
    Dev Dyn; 2003 Oct; 228(2):173-84. PubMed ID: 14517989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salivary gland morphogenesis and basement membranes.
    Kadoya Y; Yamashina S
    Anat Sci Int; 2005 Jun; 80(2):71-9. PubMed ID: 15960312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhancement of submandibular gland branch formation on chitosan membranes.
    Yang TL; Young TH
    Biomaterials; 2008 Jun; 29(16):2501-8. PubMed ID: 18316118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of compositional topography of amniotic membrane scaffold on tissue morphogenesis of salivary gland.
    Hsiao YC; Lee HW; Chen YT; Young TH; Yang TL
    Biomaterials; 2011 Jul; 32(19):4424-32. PubMed ID: 21439637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterial mediated epithelial-mesenchymal interaction of salivary tissue under serum free condition.
    Yang TL; Hsiao YC; Lin SJ; Lee HW; Lou PJ; Ko JY; Young TH
    Biomaterials; 2010 Jan; 31(2):288-95. PubMed ID: 19853295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of extracellular matrix components in developing mouse salivary glands by confocal microscopy.
    Hardman P; Spooner BS
    Anat Rec; 1992 Nov; 234(3):452-9. PubMed ID: 1443671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro.
    Durbeej M; Talts JF; Henry MD; Yurchenco PD; Campbell KP; Ekblom P
    Differentiation; 2001 Dec; 69(2-3):121-34. PubMed ID: 11798066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis.
    Patel VN; Knox SM; Likar KM; Lathrop CA; Hossain R; Eftekhari S; Whitelock JM; Elkin M; Vlodavsky I; Hoffman MP
    Development; 2007 Dec; 134(23):4177-86. PubMed ID: 17959718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan cooperates with mesenchyme-derived factors in regulating salivary gland epithelial morphogenesis.
    Yang TL; Young TH
    J Cell Mol Med; 2009 Sep; 13(9A):2853-63. PubMed ID: 18627424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan biomaterials induce branching morphogenesis in a model of tissue-engineered glandular organs in serum-free conditions.
    Yang TL; Lin L; Hsiao YC; Lee HW; Young TH
    Tissue Eng Part A; 2012 Nov; 18(21-22):2220-30. PubMed ID: 22889068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced proteolytic activity is responsible for the aberrant morphogenetic development of SV40-immortalized normal human salivary gland cells grown on basement membrane components.
    Azuma M; Tamatani T; Fukui K; Bando T; Sato M
    Lab Invest; 1994 Feb; 70(2):217-27. PubMed ID: 8139263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix and growth factors in salivary gland development.
    Sequeira SJ; Larsen M; DeVine T
    Front Oral Biol; 2010; 14():48-77. PubMed ID: 20428011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dystroglycan and laminins: glycoconjugates involved in branching epithelial morphogenesis.
    Durbeej M; Ekblom P
    Exp Lung Res; 1997; 23(2):109-18. PubMed ID: 9088921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laminin alpha1 chain G domain peptide, RKRLQVQLSIRT, inhibits epithelial branching morphogenesis of cultured embryonic mouse submandibular gland.
    Kadoya Y; Nomizu M; Sorokin LM; Yamashina S; Yamada Y
    Dev Dyn; 1998 Jul; 212(3):394-402. PubMed ID: 9671943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter.
    Takahashi Y; Nogawa H
    Development; 1991 Feb; 111(2):327-35. PubMed ID: 1893867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminin and heparan sulfate proteoglycan mediate epithelial cell polarization in organotypic cultures of embryonic lung cells: evidence implicating involvement of the inner globular region of laminin beta 1 chain and the heparan sulfate groups of heparan sulfate proteoglycan.
    Schuger L; Skubitz AP; Gilbride K; Mandel R; He L
    Dev Biol; 1996 Oct; 179(1):264-73. PubMed ID: 8873769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.