BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26189498)

  • 1. A Thiol-Ene Coupling Approach to Native Peptide Stapling and Macrocyclization.
    Wang Y; Chou DH
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10931-4. PubMed ID: 26189498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Thiol-yne/Thiol-ene Reactions for Peptide and Protein Macrocyclizations.
    Wang Y; Bruno BJ; Cornillie S; Nogieira JM; Chen D; Cheatham TE; Lim CS; Chou DH
    Chemistry; 2017 May; 23(29):7087-7092. PubMed ID: 28345248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable-Length Ester-Based Staples for α-Helical Peptides by Using A Double Thiol-ene Reaction.
    Paterson DL; Flanagan JU; Shepherd PR; Harris PWR; Brimble MA
    Chemistry; 2020 Aug; 26(47):10826-10833. PubMed ID: 32232881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction.
    Islam MS; Junod SL; Zhang S; Buuh ZY; Guan Y; Zhao M; Kaneria KH; Kafley P; Cohen C; Maloney R; Lyu Z; Voelz VA; Yang W; Wang RE
    Nat Commun; 2022 Jan; 13(1):350. PubMed ID: 35039490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Peptide Backbone Stapling Strategy Enabled by the Multicomponent Incorporation of Amide N-Substituents.
    Ricardo MG; Marrrero JF; Valdés O; Rivera DG; Wessjohann LA
    Chemistry; 2019 Jan; 25(3):769-774. PubMed ID: 30412333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-resin peptide macrocyclization using thiol-ene click chemistry.
    Aimetti AA; Shoemaker RK; Lin CC; Anseth KS
    Chem Commun (Camb); 2010 Jun; 46(23):4061-3. PubMed ID: 20379591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review stapling peptides using cysteine crosslinking.
    Fairlie DP; Dantas de Araujo A
    Biopolymers; 2016 Nov; 106(6):843-852. PubMed ID: 27178225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Strain-Promoted Macrocyclization for the Rapid Selection of Cell-Active Stapled Peptides.
    Lau YH; Wu Y; Rossmann M; Tan BX; de Andrade P; Tan YS; Verma C; McKenzie GJ; Venkitaraman AR; Hyvönen M; Spring DR
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15410-3. PubMed ID: 26768531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents.
    Ceballos J; Grinhagena E; Sangouard G; Heinis C; Waser J
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9022-9031. PubMed ID: 33450121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Methodology for Incorporating Chiral Linkers into Stapled Peptides.
    Serrano JC; Sipthorp J; Xu W; Itzhaki LS; Ley SV
    Chembiochem; 2017 Jun; 18(12):1066-1071. PubMed ID: 28388005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diaminodiacid-based solid-phase synthesis of all-hydrocarbon stapled α-helical peptides.
    Wang FL; Guo Y; Li SJ; Guo QX; Shi J; Li YM
    Org Biomol Chem; 2015 Jun; 13(22):6286-90. PubMed ID: 25966031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization.
    He B; Wu T; He P; Lv F; Liu H
    Chem Biol Drug Des; 2021 Jun; 97(6):1129-1136. PubMed ID: 33283479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Selective Polyfluoroaryl Modification and Unsymmetric Stapling of Unprotected Peptides.
    Wang M; Pan D; Zhang Q; Lei Y; Wang C; Jia H; Mou L; Miao X; Ren X; Xu Z
    J Am Chem Soc; 2024 Mar; 146(10):6675-6685. PubMed ID: 38427024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Resin Preparation of Allenamidyl Peptides: A Versatile Chemoselective Conjugation and Intramolecular Cyclisation Tool.
    Cameron AJ; Harris PWR; Brimble MA
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):18054-18061. PubMed ID: 32700356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraining and Modifying Peptides Using Pd-Mediated Cysteine Allylation.
    Kriegesmann J; Schlatzer T; Che K; Altdorf C; Huhmann S; Kählig H; Kurzbach D; Breinbauer R; Becker CFW
    Chembiochem; 2023 Jul; 24(13):e202300098. PubMed ID: 36917494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-functional polymers via thiol-ene conjugation.
    Kuhlmann M; Reimann O; Hackenberger CP; Groll J
    Macromol Rapid Commun; 2015 Mar; 36(5):472-6. PubMed ID: 25645319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling.
    Spokoyny AM; Zou Y; Ling JJ; Yu H; Lin YS; Pentelute BL
    J Am Chem Soc; 2013 Apr; 135(16):5946-9. PubMed ID: 23560559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the geometric and hydrophobic constraints of stapled peptides.
    Li J; Tan YS; Verma CS
    Proteins; 2024 Jan; ():. PubMed ID: 38196284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new i, i + 3 peptide stapling system for α-helix stabilization.
    Shim SY; Kim YW; Verdine GL
    Chem Biol Drug Des; 2013 Dec; 82(6):635-42. PubMed ID: 24267668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.