These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26189605)

  • 41. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
    Hansen BJ; Liu Y; Yang R; Wang ZL
    ACS Nano; 2010 Jul; 4(7):3647-52. PubMed ID: 20507155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of a stretchable solid-state micro-supercapacitor array.
    Kim D; Shin G; Kang YJ; Kim W; Ha JS
    ACS Nano; 2013 Sep; 7(9):7975-82. PubMed ID: 23952841
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO
    Athira BS; George A; Vaishna Priya K; Hareesh US; Gowd EB; Surendran KP; Chandran A
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44239-44250. PubMed ID: 36129836
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.
    Guo H; Yeh MH; Zi Y; Wen Z; Chen J; Liu G; Hu C; Wang ZL
    ACS Nano; 2017 May; 11(5):4475-4482. PubMed ID: 28401759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene-P(VDF-TrFE) multilayer film for flexible applications.
    Bae SH; Kahya O; Sharma BK; Kwon J; Cho HJ; Özyilmaz B; Ahn JH
    ACS Nano; 2013 Apr; 7(4):3130-8. PubMed ID: 23448089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.
    Sinha TK; Ghosh SK; Maiti R; Jana S; Adhikari B; Mandal D; Ray SK
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):14986-93. PubMed ID: 27266368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices.
    Wu W; Bai S; Yuan M; Qin Y; Wang ZL; Jing T
    ACS Nano; 2012 Jul; 6(7):6231-5. PubMed ID: 22713250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems.
    Falk M; Shleev S
    Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A single-molecule potentiometer.
    Meisner JS; Kamenetska M; Krikorian M; Steigerwald ML; Venkataraman L; Nuckolls C
    Nano Lett; 2011 Apr; 11(4):1575-9. PubMed ID: 21413779
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.
    Xue H; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nano PDA@Tur-Modified Piezoelectric Sensors for Enhanced Sensitivity and Energy Harvesting.
    Yang R; Ma Y; Cui J; Liu M; Wu Y; Zheng H
    ACS Sens; 2024 Jun; 9(6):3137-3149. PubMed ID: 38812068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Powered Smart Insole for Monitoring Human Gait Signals.
    Wang W; Cao J; Yu J; Liu R; Bowen CR; Liao WH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Harvesting energy from the natural vibration of human walking.
    Yang W; Chen J; Zhu G; Yang J; Bai P; Su Y; Jing Q; Cao X; Wang ZL
    ACS Nano; 2013 Dec; 7(12):11317-24. PubMed ID: 24180642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human Interactive Triboelectric Nanogenerator as a Self-Powered Smart Seat.
    Chandrasekhar A; Alluri NR; Saravanakumar B; Selvarajan S; Kim SJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9692-9. PubMed ID: 27023206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting.
    Liu X; Shang Y; Zhang J; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.
    Fuh YK; Ho HC
    Nanotechnology; 2016 Mar; 27(9):095401. PubMed ID: 26822295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation.
    Alam MM; Ghosh SK; Sultana A; Mandal D
    Nanotechnology; 2015 Apr; 26(16):165403. PubMed ID: 25827201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the β-phase of PVDF for flexible piezoelectric nanogenerators.
    Ojha S; Paria S; Karan SK; Si SK; Maitra A; Das AK; Halder L; Bera A; De A; Khatua BB
    Nanoscale; 2019 Dec; 11(47):22989-22999. PubMed ID: 31769775
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.
    Zhang K; Wang X; Yang Y; Wang ZL
    ACS Nano; 2015; 9(4):3521-9. PubMed ID: 25687592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-Dimensional MOF Modulated Fiber Nanogenerator for Effective Acoustoelectric Conversion and Human Motion Detection.
    Roy K; Jana S; Mallick Z; Ghosh SK; Dutta B; Sarkar S; Sinha C; Mandal D
    Langmuir; 2021 Jun; 37(23):7107-7117. PubMed ID: 34061539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.