These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26189993)

  • 21. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations.
    Bian Y; Holland JB
    Heredity (Edinb); 2017 Jun; 118(6):585-593. PubMed ID: 28198815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel.
    Yang J; Jiang H; Yeh CT; Yu J; Jeddeloh JA; Nettleton D; Schnable PS
    Plant J; 2015 Nov; 84(3):587-96. PubMed ID: 26386250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Quantitative Genetic Control of Root Architecture in Maize.
    Bray AL; Topp CN
    Plant Cell Physiol; 2018 Oct; 59(10):1919-1930. PubMed ID: 30020530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy of across-environment genome-wide prediction in maize nested association mapping populations.
    Guo Z; Tucker DM; Wang D; Basten CJ; Ersoz E; Briggs WH; Lu J; Li M; Gay G
    G3 (Bethesda); 2013 Feb; 3(2):263-72. PubMed ID: 23390602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.
    Clark RT; Famoso AN; Zhao K; Shaff JE; Craft EJ; Bustamante CD; McCouch SR; Aneshansley DJ; Kochian LV
    Plant Cell Environ; 2013 Feb; 36(2):454-66. PubMed ID: 22860896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Training set optimization of genomic prediction by means of EthAcc.
    Mangin B; Rincent R; Rabier CE; Moreau L; Goudemand-Dugue E
    PLoS One; 2019; 14(2):e0205629. PubMed ID: 30779753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle.
    Chen L; Schenkel F; Vinsky M; Crews DH; Li C
    J Anim Sci; 2013 Oct; 91(10):4669-78. PubMed ID: 24078618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method.
    Hu H; Schrag TA; Peis R; Unterseer S; Schipprack W; Chen S; Lai J; Yan J; Prasanna BM; Nair SK; Chaikam V; Rotarenco V; Shatskaya OA; Zavalishina A; Scholten S; Schön CC; Melchinger AE
    Genetics; 2016 Apr; 202(4):1267-76. PubMed ID: 26896330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Empirical and deterministic accuracies of across-population genomic prediction.
    Wientjes YC; Veerkamp RF; Bijma P; Bovenhuis H; Schrooten C; Calus MP
    Genet Sel Evol; 2015 Feb; 47(1):5. PubMed ID: 25885467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fast genomic selection approach for large genomic data.
    Liu H; Chen GB
    Theor Appl Genet; 2017 Jun; 130(6):1277-1284. PubMed ID: 28389770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population.
    Shi C; Uzarowska A; Ouzunova M; Landbeck M; Wenzel G; Lübberstedt T
    BMC Genomics; 2007 Jan; 8():22. PubMed ID: 17233901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the Potential for Genomic Selection To Improve Husk Traits in Maize.
    Cui Z; Dong H; Zhang A; Ruan Y; He Y; Zhang Z
    G3 (Bethesda); 2020 Oct; 10(10):3741-3749. PubMed ID: 32816916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize.
    Dzievit MJ; Guo T; Li X; Yu J
    Plant Genome; 2021 Nov; 14(3):e20160. PubMed ID: 34661990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salinity stress tolerance prediction for biomass-related traits in maize (Zea mays L.) using genome-wide markers.
    Singh V; Krause M; Sandhu D; Sekhon RS; Kaundal A
    Plant Genome; 2023 Dec; 16(4):e20385. PubMed ID: 37667417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased accuracy of artificial selection by using the realized relationship matrix.
    Hayes BJ; Visscher PM; Goddard ME
    Genet Res (Camb); 2009 Feb; 91(1):47-60. PubMed ID: 19220931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic prediction of maternal haploid induction rate in maize.
    Almeida VC; Trentin HU; Frei UK; Lübberstedt T
    Plant Genome; 2020 Mar; 13(1):e20014. PubMed ID: 33016635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing genomic prediction accuracy from purebred, crossbred and combined purebred and crossbred reference populations in sheep.
    Moghaddar N; Swan AA; van der Werf JH
    Genet Sel Evol; 2014 Sep; 46(1):58. PubMed ID: 25927315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Genetic variability and interrelationships of mainly quantitative traits in Glycyrrhiza uralensis cultivated population].
    Yu F; Fang Y; Wang W; Wang Q; Liu F
    Zhongguo Zhong Yao Za Zhi; 2011 Sep; 36(18):2457-61. PubMed ID: 22256744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.