BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26190574)

  • 1. An Unexpected Duo: Rubredoxin Binds Nine TPR Motifs to Form LapB, an Essential Regulator of Lipopolysaccharide Synthesis.
    Prince C; Jia Z
    Structure; 2015 Aug; 23(8):1500-1506. PubMed ID: 26190574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.
    Klein G; Kobylak N; Lindner B; Stupak A; Raina S
    J Biol Chem; 2014 May; 289(21):14829-53. PubMed ID: 24722986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
    Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of and lipopolysaccharide binding to the E. coli LptC protein dimer.
    Schultz KM; Klug CS
    Protein Sci; 2018 Feb; 27(2):381-389. PubMed ID: 29024084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of C-terminal structure of MinC and its implication in evolution of bacterial cell division.
    Yang S; Shen Q; Wang S; Song C; Lei Z; Han S; Zhang X; Zheng J; Jia Z
    Sci Rep; 2017 Aug; 7(1):7627. PubMed ID: 28790446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the amino-terminal domain of LpoA from Escherichia coli and Haemophilus influenzae.
    Kelley A; Vijayalakshmi J; Saper MA
    Acta Crystallogr F Struct Biol Commun; 2019 May; 75(Pt 5):368-376. PubMed ID: 31045566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the First Committed Step in Lipopolysaccharide Biosynthesis Catalyzed by LpxC Requires the Essential Protein LapC (YejM) and HslVU Protease.
    Biernacka D; Gorzelak P; Klein G; Raina S
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga Guillardia theta.
    Schweimer K; Hoffmann S; Wastl J; Maier UG; Rösch P; Sticht H
    Protein Sci; 2000 Aug; 9(8):1474-86. PubMed ID: 10975569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase.
    Perry A; Tambyrajah W; Grossmann JG; Lian LY; Scrutton NS
    Biochemistry; 2004 Mar; 43(11):3167-82. PubMed ID: 15023067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an internal cavity in the PhoQ sensor domain for PhoQ activity and SafA-mediated control.
    Yoshitani K; Ishii E; Taniguchi K; Sugimoto H; Shiro Y; Akiyama Y; Kato A; Utsumi R; Eguchi Y
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):684-694. PubMed ID: 30632929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli.
    Shu S; Mi W
    Nat Commun; 2022 Aug; 13(1):4576. PubMed ID: 35931690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.
    Krachler AM; Sharma A; Kleanthous C
    Proteins; 2010 Jul; 78(9):2131-43. PubMed ID: 20455268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner.
    Lee HB; Park SH; Lee CR
    J Microbiol; 2021 Jul; 59(7):666-674. PubMed ID: 33990910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library.
    Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J
    J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LapB (YciM) orchestrates protein-protein interactions at the interface of lipopolysaccharide and phospholipid biosynthesis.
    Möller AM; Brückner S; Tilg LJ; Kutscher B; Nowaczyk MM; Narberhaus F
    Mol Microbiol; 2023 Jan; 119(1):29-43. PubMed ID: 36464488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TPR domain of NrfG mediates complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia coli O157:H7.
    Han D; Kim K; Oh J; Park J; Kim Y
    Proteins; 2008 Feb; 70(3):900-14. PubMed ID: 17803240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first crystal structure of the peptidase domain of the U32 peptidase family.
    Schacherl M; Montada AA; Brunstein E; Baumann U
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2505-12. PubMed ID: 26627657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipopolysaccharide binding to the periplasmic protein LptA.
    Schultz KM; Lundquist TJ; Klug CS
    Protein Sci; 2017 Aug; 26(8):1517-1523. PubMed ID: 28419595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Essential Membrane Protein Modulates the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia coli.
    Fivenson EM; Bernhardt TG
    mBio; 2020 May; 11(3):. PubMed ID: 32430473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery complex.
    Daimon Y; Iwama-Masui C; Tanaka Y; Shiota T; Suzuki T; Miyazaki R; Sakurada H; Lithgow T; Dohmae N; Mori H; Tsukazaki T; Narita SI; Akiyama Y
    Mol Microbiol; 2017 Dec; 106(5):760-776. PubMed ID: 28960545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.