These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26190645)

  • 1. Sodium-Naphthalenide-Driven Synthesis of Base-Metal Nanoparticles and Follow-up Reactions.
    Schöttle C; Bockstaller P; Popescu R; Gerthsen D; Feldmann C
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9866-70. PubMed ID: 26190645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the naphthalenide-driven synthesis and reactivity of zerovalent iron nanoparticles.
    Reiß A; Donsbach C; Feldmann C
    Dalton Trans; 2021 Nov; 50(44):16343-16352. PubMed ID: 34734594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosized Gadolinium and Uranium-Two Representatives of High-Reactivity Lanthanide and Actinide Metal Nanoparticles.
    Schöttle C; Rudel S; Popescu R; Gerthsen D; Kraus F; Feldmann C
    ACS Omega; 2017 Dec; 2(12):9144-9149. PubMed ID: 31457432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia synthesis over Co-Mo alloy nanoparticle catalyst prepared via sodium naphthalenide-driven reduction.
    Tsuji Y; Kitano M; Kishida K; Sasase M; Yokoyama T; Hara M; Hosono H
    Chem Commun (Camb); 2016 Dec; 52(100):14369-14372. PubMed ID: 27853756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state.
    Korobkov I; Gorelsky S; Gambarotta S
    J Am Chem Soc; 2009 Aug; 131(30):10406-20. PubMed ID: 19588963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ti(0) nanoparticles via lithium-naphthalenide-driven reduction.
    Schöttle C; Doronkin DE; Popescu R; Gerthsen D; Grunwaldt JD; Feldmann C
    Chem Commun (Camb); 2016 May; 52(37):6316-9. PubMed ID: 27086750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct reaction of iodine-activated lanthanoid metals with 2,6-diisopropylphenol.
    Hamidi S; Deacon GB; Junk PC; Neumann P
    Dalton Trans; 2012 Mar; 41(12):3541-52. PubMed ID: 22315047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Metal Selenide and Metal-Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals.
    Park SH; Choi JY; Lee YH; Park JT; Song H
    Chem Asian J; 2015 Jul; 10(7):1452-6. PubMed ID: 25883010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy alkaline earth metal pyrazolates: synthetic pathways, structural trends, and comparison with divalent lanthanoids.
    Hitzbleck J; O'Brien AY; Forsyth CM; Deacon GB; Ruhlandt-Senge K
    Chemistry; 2004 Jul; 10(13):3315-23. PubMed ID: 15224341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thorium-mediated ring-opening of tetrahydrofuran and the development of a new thorium starting material: preparation and chemistry of ThI4(DME)2.
    Travia NE; Monreal MJ; Scott BL; Kiplinger JL
    Dalton Trans; 2012 Dec; 41(48):14514-23. PubMed ID: 23027565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Phase Synthesis of Highly Reactive Rare-Earth Metal Nanoparticles.
    Bartenbach D; Wenzel O; Popescu R; Faden LP; Reiß A; Kaiser M; Zimina A; Grunwaldt JD; Gerthsen D; Feldmann C
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17373-17377. PubMed ID: 33929069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of stoichiometrically defined metal oxide nanoparticles at room temperature.
    Chen L; Xu J; Tanner DA; Phelan R; Van der Meulen M; Holmes JD; Morris MA
    Chemistry; 2009; 15(2):440-8. PubMed ID: 18991306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Reactions of 3d Metal Complexes with the Bulky Alkoxide Ligand [OC(t)Bu2Ph].
    Bellow JA; Yousif M; Fang D; Kratz EG; Cisneros GA; Groysman S
    Inorg Chem; 2015 Jun; 54(12):5624-33. PubMed ID: 26043187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel synthetic route to transition metal phosphide nanoparticles.
    Yao Z; Li M; Wang X; Qiao X; Zhu J; Zhao Y; Wang G; Yin J; Wang H
    Dalton Trans; 2015 Mar; 44(12):5503-9. PubMed ID: 25697219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-free synthesis and functionalization of gold nanoparticles.
    Schulz-Dobrick M; Sarathy KV; Jansen M
    J Am Chem Soc; 2005 Sep; 127(37):12816-7. PubMed ID: 16159272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal based synthetic routes to heavy alkaline earth aryloxo complexes involving ligands of moderate steric bulk.
    Deacon GB; Junk PC; Moxey GJ; Guino-o M; Ruhlandt-Senge K
    Dalton Trans; 2009 Jul; (25):4878-87. PubMed ID: 19662279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali metal and zinc complexes of a bridging 2,5-diamino-1,4-benzoquinonediimine ligand.
    Su Y; Zhao Y; Gao J; Dong Q; Wu B; Yang XJ
    Inorg Chem; 2012 May; 51(10):5889-96. PubMed ID: 22571509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction.
    Seo B; Jung GY; Sa YJ; Jeong HY; Cheon JY; Lee JH; Kim HY; Kim JC; Shin HS; Kwak SK; Joo SH
    ACS Nano; 2015 Apr; 9(4):3728-39. PubMed ID: 25794552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method.
    Kusada K; Kobayashi H; Yamamoto T; Matsumura S; Sumi N; Sato K; Nagaoka K; Kubota Y; Kitagawa H
    J Am Chem Soc; 2013 Apr; 135(15):5493-6. PubMed ID: 23557199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, reactivity, and characterization of sodium and rare-earth metal complexes bearing a dianionic N-aryloxo-functionalized beta-ketoiminate ligand.
    Peng H; Zhang Z; Qi R; Yao Y; Zhang Y; Shen Q; Cheng Y
    Inorg Chem; 2008 Nov; 47(21):9828-35. PubMed ID: 18828586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.