These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex. Matsumoto S; Taguchi Y; Shimada A; Igura M; Kohda D Biochemistry; 2017 Jan; 56(4):602-611. PubMed ID: 27997792 [TBL] [Abstract][Full Text] [Related]
5. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Price JL; Powers DL; Powers ET; Kelly JW Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14127-32. PubMed ID: 21825145 [TBL] [Abstract][Full Text] [Related]
6. Selective control of oligosaccharide transfer efficiency for the N-glycosylation sequon by a point mutation in oligosaccharyltransferase. Igura M; Kohda D J Biol Chem; 2011 Apr; 286(15):13255-60. PubMed ID: 21357684 [TBL] [Abstract][Full Text] [Related]
7. Construction of green fluorescence protein mutant to monitor STT3B-dependent N-glycosylation. Kitajima T; Xue W; Liu YS; Wang CD; Liu SS; Fujita M; Gao XD FEBS J; 2018 Mar; 285(5):915-928. PubMed ID: 29282902 [TBL] [Abstract][Full Text] [Related]
8. Quantitative assessment of the preferences for the amino acid residues flanking archaeal N-linked glycosylation sites. Igura M; Kohda D Glycobiology; 2011 May; 21(5):575-83. PubMed ID: 21115605 [TBL] [Abstract][Full Text] [Related]
9. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering. Ihssen J; Haas J; Kowarik M; Wiesli L; Wacker M; Schwede T; Thöny-Meyer L Open Biol; 2015 Apr; 5(4):140227. PubMed ID: 25833378 [TBL] [Abstract][Full Text] [Related]
10. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Schwarz F; Lizak C; Fan YY; Fleurkens S; Kowarik M; Aebi M Glycobiology; 2011 Jan; 21(1):45-54. PubMed ID: 20847188 [TBL] [Abstract][Full Text] [Related]
11. N-glycosylation at one rabies virus glycoprotein sequon influences N-glycan processing at a distant sequon on the same molecule. Wojczyk BS; Takahashi N; Levy MT; Andrews DW; Abrams WR; Wunner WH; Spitalnik SL Glycobiology; 2005 Jun; 15(6):655-66. PubMed ID: 15677380 [TBL] [Abstract][Full Text] [Related]
12. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Petrescu AJ; Milac AL; Petrescu SM; Dwek RA; Wormald MR Glycobiology; 2004 Feb; 14(2):103-14. PubMed ID: 14514716 [TBL] [Abstract][Full Text] [Related]
13. The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Mellquist JL; Kasturi L; Spitalnik SL; Shakin-Eshleman SH Biochemistry; 1998 May; 37(19):6833-7. PubMed ID: 9578569 [TBL] [Abstract][Full Text] [Related]
14. Substrate promiscuity: AglB, the archaeal oligosaccharyltransferase, can process a variety of lipid-linked glycans. Cohen-Rosenzweig C; Guan Z; Shaanan B; Eichler J Appl Environ Microbiol; 2014 Jan; 80(2):486-96. PubMed ID: 24212570 [TBL] [Abstract][Full Text] [Related]
15. Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. Kasturi L; Chen H; Shakin-Eshleman SH Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):415-9. PubMed ID: 9163332 [TBL] [Abstract][Full Text] [Related]
16. Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Derking R; Allen JD; Cottrell CA; Sliepen K; Seabright GE; Lee WH; Aldon Y; Rantalainen K; Antanasijevic A; Copps J; Yasmeen A; Cupo A; Cruz Portillo VM; Poniman M; Bol N; van der Woude P; de Taeye SW; van den Kerkhof TLGM; Klasse PJ; Ozorowski G; van Gils MJ; Moore JP; Ward AB; Crispin M; Sanders RW Cell Rep; 2021 Apr; 35(1):108933. PubMed ID: 33826885 [TBL] [Abstract][Full Text] [Related]