These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26190857)

  • 1. The Role of OOH Binding Site and Pt Surface Structure on ORR Activities.
    Jia Q; Caldwell K; Ziegelbauer JM; Kongkanand A; Wagner FT; Mukerjee S; Ramaker DE
    J Electrochem Soc; 2014; 161(14):F1323-F1329. PubMed ID: 26190857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Effect of Pd on the Oxygen Reduction Performance of Pt by In Situ Raman Spectroscopy.
    Sun YL; A YL; Yue MF; Chen HQ; Ze H; Wang YH; Dong JC; Tian ZQ; Fang PP; Li JF
    Anal Chem; 2022 Mar; 94(11):4779-4786. PubMed ID: 35271253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy.
    Ramaker DE; Korovina A; Croze V; Melke J; Roth C
    Phys Chem Chem Phys; 2014 Jul; 16(27):13645-53. PubMed ID: 24664398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an
    Ze H; Chen X; Wang XT; Wang YH; Chen QQ; Lin JS; Zhang YJ; Zhang XG; Tian ZQ; Li JF
    J Am Chem Soc; 2021 Jan; 143(3):1318-1322. PubMed ID: 33449677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the Oxygen Reduction Selectivity in Pt or Pd Chalcogenides via the Ensemble Effect and Electronic Effect.
    Song M; Chen M; Zhang C; Zhang J; Liu W; Huang X; Li J; Feng G; Wang D
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31375-31383. PubMed ID: 37341772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual strain effect of a Pt-based L1
    Liu M; Xin H; Wu Q
    Phys Chem Chem Phys; 2019 Mar; 21(12):6477-6484. PubMed ID: 30839954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic
    Caldwell KM; Ramaker DE; Jia Q; Mukerjee S; Ziegelbauer JM; Kukreja RS; Kongkanand A
    J Phys Chem C Nanomater Interfaces; 2015 Jan; 119(1):757-765. PubMed ID: 26191117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface.
    Kattel S; Wang G
    J Chem Phys; 2014 Sep; 141(12):124713. PubMed ID: 25273467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.
    Gan L; Rudi S; Cui C; Heggen M; Strasser P
    Small; 2016 Jun; 12(23):3189-96. PubMed ID: 27152487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR).
    Wang YH; Le JB; Li WQ; Wei J; Radjenovic PM; Zhang H; Zhou XS; Cheng J; Tian ZQ; Li JF
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16062-16066. PubMed ID: 31513325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe).
    Duan Z; Wang G
    Phys Chem Chem Phys; 2011 Dec; 13(45):20178-87. PubMed ID: 22187733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study.
    Ou LH
    J Mol Model; 2015 Nov; 21(11):281. PubMed ID: 26450348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst.
    Xiao BB; Jiang XB; Jiang Q
    Phys Chem Chem Phys; 2016 May; 18(21):14234-43. PubMed ID: 27167779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells.
    Zhang X; Yu S; Qiao L; Zheng W; Liu P
    J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Strained B-Doped Ni Nanoparticles for Efficient Electrochemical H
    Fu H; Zhang N; Lai F; Zhang L; Wu Z; Li H; Zhu H; Liu T
    Small; 2022 Sep; 18(38):e2203510. PubMed ID: 35983928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.