These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26190859)

  • 1. A fully resolved active musculo-mechanical model for esophageal transport.
    Kou W; Bhalla AP; Griffith BE; Pandolfino JE; Kahrilas PJ; Patankar NA
    J Comput Phys; 2015 Oct; 298():446-465. PubMed ID: 26190859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuum mechanics-based musculo-mechanical model for esophageal transport.
    Kou W; Griffith BE; Pandolfino JE; Kahrilas PJ; Patankar NA
    J Comput Phys; 2017 Oct; 348():433-459. PubMed ID: 29081541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element simulation of food transport through the esophageal body.
    Yang W; Fung TC; Chian KS; Chong CK
    World J Gastroenterol; 2007 Mar; 13(9):1352-9. PubMed ID: 17457965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peristaltic regimes in esophageal transport.
    Elisha G; Acharya S; Halder S; Carlson DA; Kou W; Kahrilas PJ; Pandolfino JE; Patankar NA
    Biomech Model Mechanobiol; 2023 Feb; 22(1):23-41. PubMed ID: 36352039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Esophageal Physiology Using Mechanical State Analysis.
    Leibbrandt RE; Dinning PG; Costa M; Cock C; Wiklendt L; Wang G; Tack J; van Beckevoort D; Rommel N; Omari TI
    Front Syst Neurosci; 2016; 10():10. PubMed ID: 26924967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into pharyngo-esophageal bolus transport revealed by pressure-impedance measurement.
    Omari T; Kritas S; Cock C
    Neurogastroenterol Motil; 2012 Nov; 24(11):e549-56. PubMed ID: 22963535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of abnormalities of the lower esophageal sphincter during esophageal emptying based on a fully coupled bolus-esophageal-gastric model.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1069-1082. PubMed ID: 29644483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation studies of the role of esophageal mucosa in bolus transport.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1001-1009. PubMed ID: 28050744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of intraluminal manometric measurements in terms of swallowing mechanics.
    Brasseur JG; Dodds WJ
    Dysphagia; 1991; 6(2):100-19. PubMed ID: 1935258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Neurogastroenterol Motil; 2017 Jun; 29(6):. PubMed ID: 28054418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of intrabolus pressure during esophageal peristaltic bolus transport.
    Ren J; Massey BT; Dodds WJ; Kern MK; Brasseur JG; Shaker R; Harrington SS; Hogan WJ; Arndorfer RC
    Am J Physiol; 1993 Mar; 264(3 Pt 1):G407-13. PubMed ID: 8460696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model for estimating muscle tension in vivo during esophageal bolus transport.
    Nicosia MA; Brasseur JG
    J Theor Biol; 2002 Nov; 219(2):235-55. PubMed ID: 12413878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation studies of circular muscle contraction, longitudinal muscle shortening, and their coordination in esophageal transport.
    Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA
    Am J Physiol Gastrointest Liver Physiol; 2015 Aug; 309(4):G238-47. PubMed ID: 26113296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology of the esophageal pressure transition zone: separate contraction waves above and below.
    Ghosh SK; Janiak P; Schwizer W; Hebbard GS; Brasseur JG
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G568-76. PubMed ID: 16282364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of the feline esophagus associated with respiration and peristalsis. An evaluation using tantalum markers.
    Dodds WJ; Stewart ET; Hodges D; Zboralske FF
    J Clin Invest; 1973 Jan; 52(1):1-13. PubMed ID: 4682383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fully resolved multiphysics model of gastric peristalsis and bolus emptying in the upper gastrointestinal tract.
    Acharya S; Halder S; Kou W; Kahrilas PJ; Pandolfino JE; Patankar NA
    Comput Biol Med; 2022 Apr; 143():104948. PubMed ID: 35091365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle shortening along the normal esophagus during swallowing.
    Dai Q; Korimilli A; Thangada VK; Chung CY; Parkman H; Brasseur J; Miller LS
    Dig Dis Sci; 2006 Jan; 51(1):105-9. PubMed ID: 16416220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in specific esophageal neuromechanical wall states are associated with conscious awareness of a solid swallowed bolus in healthy subjects.
    Cock C; Leibbrandt RE; Dinning PG; Costa MC; Wiklendt L; Omari TI
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G946-G954. PubMed ID: 32281396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of normal and abnormal esophageal transport using computer simulations.
    Li M; Brasseur JG; Dodds WJ
    Am J Physiol; 1994 Apr; 266(4 Pt 1):G525-43. PubMed ID: 8178991
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.