BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 26190950)

  • 1. Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field.
    Robertson MJ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2015 Jul; 11(7):3499-509. PubMed ID: 26190950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L.
    Jiang F; Zhou CY; Wu YD
    J Phys Chem B; 2014 Jun; 118(25):6983-98. PubMed ID: 24815738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests.
    Kaminski GA; Stern HA; Berne BJ; Friesner RA; Cao YX; Murphy RB; Zhou R; Halgren TA
    J Comput Chem; 2002 Dec; 23(16):1515-31. PubMed ID: 12395421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
    Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; Lee T; Caldwell J; Wang J; Kollman P
    J Comput Chem; 2003 Dec; 24(16):1999-2012. PubMed ID: 14531054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Testing of the OPLS-AA/M Force Field for RNA.
    Robertson MJ; Qian Y; Robinson MC; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2019 Apr; 15(4):2734-2742. PubMed ID: 30807148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
    Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C
    J Chem Theory Comput; 2015 Aug; 11(8):3696-713. PubMed ID: 26574453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino-acid-dependent main-chain torsion-energy terms for protein systems.
    Sakae Y; Okamoto Y
    J Chem Phys; 2013 Feb; 138(6):064103. PubMed ID: 23425457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-field parametrization of retro-inverso modified residues: development of torsional and electrostatic parameters.
    Curcó D; Rodríguez-Ropero F; Alemán C
    J Comput Aided Mol Des; 2006 Jan; 20(1):13-25. PubMed ID: 16622796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
    Tian C; Kasavajhala K; Belfon KAA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; Pincay J; Wu Q; Simmerling C
    J Chem Theory Comput; 2020 Jan; 16(1):528-552. PubMed ID: 31714766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated conformational energy fitting for force-field development.
    Guvench O; MacKerell AD
    J Mol Model; 2008 Aug; 14(8):667-79. PubMed ID: 18458967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved OPLS-AA force field for carbohydrates.
    Kony D; Damm W; Stoll S; Van Gunsteren WF
    J Comput Chem; 2002 Nov; 23(15):1416-29. PubMed ID: 12370944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB.
    Zhou CY; Jiang F; Wu YD
    J Phys Chem B; 2015 Jan; 119(3):1035-47. PubMed ID: 25358113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved side-chain torsion potentials for the Amber ff99SB protein force field.
    Lindorff-Larsen K; Piana S; Palmo K; Maragakis P; Klepeis JL; Dror RO; Shaw DE
    Proteins; 2010 Jun; 78(8):1950-8. PubMed ID: 20408171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.
    Harder E; Damm W; Maple J; Wu C; Reboul M; Xiang JY; Wang L; Lupyan D; Dahlgren MK; Knight JL; Kaus JW; Cerutti DS; Krilov G; Jorgensen WL; Abel R; Friesner RA
    J Chem Theory Comput; 2016 Jan; 12(1):281-96. PubMed ID: 26584231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of glycyl radical parameters for the OPLS-AA/L force field.
    Komáromi I; Owen MC; Murphy RF; Lovas S
    J Comput Chem; 2008 Sep; 29(12):1999-2009. PubMed ID: 18366017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Maximum-Likelihood Approach to Force-Field Calibration.
    Zaborowski B; Jagieła D; Czaplewski C; Hałabis A; Lewandowska A; Żmudzińska W; Ołdziej S; Karczyńska A; Omieczynski C; Wirecki T; Liwo A
    J Chem Inf Model; 2015 Sep; 55(9):2050-70. PubMed ID: 26263302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.