These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26190957)

  • 1. A High Power-Density, Mediator-Free, Microfluidic Biophotovoltaic Device for Cyanobacterial Cells.
    Bombelli P; Müller T; Herling TW; Howe CJ; Knowles TP
    Adv Energy Mater; 2015 Jan; 5(2):1-6. PubMed ID: 26190957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation from digitally printed cyanobacteria.
    Sawa M; Fantuzzi A; Bombelli P; Howe CJ; Hellgardt K; Nixon PJ
    Nat Commun; 2017 Nov; 8(1):1327. PubMed ID: 29109396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Regenerating Soft Biophotovoltaic Devices.
    Qiu X; Castañeda Ocampo O; de Vries HW; van Putten M; Loznik M; Herrmann A; Chiechi RC
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37625-37633. PubMed ID: 30295451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications.
    Liu L; Choi S
    Lab Chip; 2017 Nov; 17(22):3817-3825. PubMed ID: 28990602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type IV Pili-Independent Photocurrent Production by the Cyanobacterium
    Thirumurthy MA; Hitchcock A; Cereda A; Liu J; Chavez MS; Doss BL; Ros R; El-Naggar MY; Heap JT; Bibby TS; Jones AK
    Front Microbiol; 2020; 11():1344. PubMed ID: 32714295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2 )and ZnO.
    Mershin A; Matsumoto K; Kaiser L; Yu D; Vaughn M; Nazeeruddin MK; Bruce BD; Graetzel M; Zhang S
    Sci Rep; 2012; 2():234. PubMed ID: 22355747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Langmuir-Blodgett Graphene-Based Films for Algal Biophotovoltaic Fuel Cells.
    Periasamy V; Jaafar MM; Chandrasekaran K; Talebi S; Ng FL; Phang SM; Kumar GG; Iwamoto M
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis.
    Wey LT; Bombelli P; Chen X; Lawrence JM; Rabideau CM; Rowden SJL; Zhang JZ; Howe CJ
    ChemElectroChem; 2019 Oct; 6(21):5375-5386. PubMed ID: 31867153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Broadband Multiplex Living Solar Cell.
    Kim MJ; Lee S; Moon CK; Kim JJ; Youn JR; Song YS
    Nano Lett; 2020 Jun; 20(6):4286-4291. PubMed ID: 32365296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical-scale biophotovoltaics for long-term photo-current generation from Synechocystis sp. PCC6803.
    Lai B; Schneider H; Tschörtner J; Schmid A; Krömer JO
    Biotechnol Bioeng; 2021 Jul; 118(7):2637-2648. PubMed ID: 33844269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells.
    Sekar N; Umasankar Y; Ramasamy RP
    Phys Chem Chem Phys; 2014 May; 16(17):7862-71. PubMed ID: 24643249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrochemical systems: Sustainable bio-energy powerhouses.
    Gul MM; Ahmad KS
    Biosens Bioelectron; 2019 Oct; 142():111576. PubMed ID: 31412313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous-soluble bipyridine cobalt(ii/iii) complexes act as direct redox mediators in photosystem I-based biophotovoltaic devices.
    Teodor AH; Ooi EJ; Medina J; Alarcon M; Vaughn MD; Bruce BD; Bergkamp JJ
    RSC Adv; 2021 Mar; 11(18):10434-10450. PubMed ID: 35423559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophotovoltaics: Design and Study of Bioelectrochemical Systems for Biotechnological Applications and Metabolic Investigation.
    Rowden SJL; Bombelli P; Howe CJ
    Methods Mol Biol; 2018; 1770():335-346. PubMed ID: 29978412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mask-Free Laser Lithography for Rapid and Low-Cost Microfluidic Device Fabrication.
    Trantidou T; Friddin MS; Gan KB; Han L; Bolognesi G; Brooks NJ; Ces O
    Anal Chem; 2018 Dec; 90(23):13915-13921. PubMed ID: 30395442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-based microfluidic aluminum-air batteries: toward next-generation miniaturized power supply.
    Shen LL; Zhang GR; Biesalski M; Etzold BJM
    Lab Chip; 2019 Oct; 19(20):3438-3447. PubMed ID: 31556903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.
    Mardanpour MM; Yaghmaei S
    Biosens Bioelectron; 2016 May; 79():327-33. PubMed ID: 26720922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):878-86. PubMed ID: 22423995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Power Output by using Alginate Immobilized Algae in Biophotovoltaic Devices.
    Ng FL; Phang SM; Periasamy V; Yunus K; Fisher AC
    Sci Rep; 2017 Nov; 7(1):16237. PubMed ID: 29176639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights.
    Firoozabadi H; Mardanpour MM; Motamedian E
    Sci Rep; 2021 Jun; 11(1):12294. PubMed ID: 34112928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.